Skip to main content
Log in

NaF induces early differentiation of murine bone marrow cells along the granulocytic pathway but not the monocytic, or preosteoclastic pathway in vitro

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The stimulatory effects of sodium fluoride (NaF) on bone formation have been explained solely, by its activation of osteoblasts. However, whether and how NaF acts on the osteoclast linearge is poorly understood. We previously found that NaF differentiates HL-60 cells to granulocytic cells. To further test this action, we have employed here primary cultures of progenitor cells derived from murine bone marrow. NaF at subtoxic concentations (<0.5 mM) significantly up-regulated activities of several intracellular enzymes (lactate dehydrogenase, β-glucuronidase, acid phosphatase), cellular reduction of nitroblue tetrazolium, and nitric oxide (NO) production; which are all accepted as general differentiation markers. NaF (<0.5 mM) also up-regulated granulocyte-specific markers (chloroacetate esterase, cell surface antigens[Mac-1, Gr-1]) but not any of the monocyte-specific markers (nonspecific esterase, cell surface antigens [F4/80, MOMA-2]). Although other general differentiation markers (phagocytosis, adhesion, appearance, nuclear:cytoplasmic ratio) were not appreciably influenced by NaF, essentially in support of our prevous data from HL-60 cells, the present findings suggest that NaF induces early differentiation of bone marrow hemopoietic progenitor cells along the granulocytic pathway but not the monoicytic pathway that is linked to osteoclast formation. Therefore, in addition to its potent stimulatory effects on osteoblastic bone formation, NaF applied to patients with osteoporosis could be expected to indirectly reduce osteoclastic bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahm, J. L.; Smiley, R. Modification of noirmal human myelopoiesis by 12-O-tetradecanoylphorbol-13-acetate (TPA). Blood 58:1119–1126; 1981.

    PubMed  CAS  Google Scholar 

  • Briancon, D.; Meunier, P. J. Treatment of osteoporosis with fluoride, calcium and vitamin D. Orthop. Clin. N. Am. 12:629–648; 1981.

    CAS  Google Scholar 

  • Chaplinski, T. J.; Niedel, J. E. Cyclic nucleotide-induced maturation of human promyelocytic leukemia cells. J. Clin. Invest. 70:953–964; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Chavassieux, P. Bone effects of fluoride in animal models in vivo. A review and a recent study. J. Bone Miner. Res. 5 (Suppl. 1):S95-S99; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ding, A. H.; Nathan, C. F.; Stuehr, D. J. Release of reactive nitrogen inter-mediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141:2407–2412; 1988.

    PubMed  CAS  Google Scholar 

  • Evans, T. J.; Buttery, L. D.; Carpenter, A., et al. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produce nitration of ingested bacteria. Proc. Natl. Acad. Sci. USA 93:9553–9558; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Farley, J. R.; Tarbaux, N.; Hall, S.; Baylink, D. Evidence that fluoride-stimulated 3[H]-thymidine incorporation, in embryonic chick calvarial cell cultures is dependent upon the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors. Metabolism 37:988–995; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Farley, J. R.; Wergedal, J. E.; Baylink, D. J. Fluoride directly stimulates proliferation and alkaline phosphatase actvity of bone-forming cells. Science 222:330–332; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Glasser, L.; Fiederlein, R. L. Functional differentiation of normal human neutrophils. Blood 69:937–944; 1987.

    PubMed  CAS  Google Scholar 

  • Hestdal, K.; Ruscetti, F. W.; Ihle, J. N., et al. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J. Immunol. 147:22–28; 1991.

    PubMed  CAS  Google Scholar 

  • Hirsch, S.; Austyn, J. M.; Gordon, S. Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. J. Exp. Med. 154:713–725; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, T.; Ogata, S.; Orikasa, M.; Burns, D. M. 1,25-dihydroxyvitamin D3 promotes prostaglanding E1-induced differentiation of HL-60 cells. Calcif. Tissue Int. 57:359–366; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kawase, T.; Oguro, A.; Orikasa, M.; Burns, D. M. Characteristics of NaF-induced differentiation of HL-60 cells. J. Bone Miner. Res. 11:1676–1687; 1996.

    PubMed  CAS  Google Scholar 

  • Kawase, T.; Orikasa, M.; Suzuki, A. Aluminofluoride- and epidermal growth factor-stimulated DNA synthesis in MOB 3-4-F2 cells. Pharmacol. Toxicol. 69:330–337; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kraal, G.; Rep, M.; Janse, M. Macrophages in T and B cell, compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2. An immunohistochemical study. Scand. J. Immunol. 26:653–661; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lau, W.-K. H.; Farley, J. R.; Frieman, T. K.; Baylink, D. A proposed mechanism of the mitogen action of fluoride on bone cells: inhibition of the activity of an osteoblastic acid phosphatase. Metabolism 38:858–868; 1987.

    Google Scholar 

  • Leibovich, S. J.; Polverini, P. J.; Fong, T. W., et al. Production of angiogenic activity by human monoicytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc. Natl. Acad. Sci. USA 91:4190–4194; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Maly, F. E.; Nakamura, M.; Gauchat, J. F., et al. Superoxide-dependent nitrobule tetrazolium reduction and expression of cytochrome b-245 components by human tonsilar B lymphocytes and B cell lines. J. Immunol. 142:1260–1267; 1989.

    PubMed  CAS  Google Scholar 

  • Metcalf, D.; Nicola, N. A. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J. Cell. Physiol. 116:198–206; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Moilanen, E.; Vapaatalo, H. Nitric oxide in inflammation and immune response. Ann. Med. 27:359–367; 1995.

    PubMed  CAS  Google Scholar 

  • Orikasa, M.; Kawase, T.; Shimizu, F.; Suzuki, A. Establishment of murine macrophage-like mutant and hybrid cell lines: comparative analysis of the differentiation induced by 1α,25-dihydroxyvitamin D3 and recombinant murine interferon-γ. Cell. Immunol. 132:350–365; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Orikasa, M.; Kawase, T.; Suzuki, A. Induction of macrophagic and granulocytic differentiation of murine bone marrow progenitor cells by 1,25-dihydroxyvitamin D3. Calcif. Tissue Int. 53:193–200; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, S. L.; Teitelbaum, S. L. 1,25-Dihydroxyvitamin D3 modulates colonystimulating factor-1 receptor binding by murine bone marrow macrophage precursors. Endocrinology 128:303–311; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Souza, L. M.; Boone, T. C.; Gabrilove, J., et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232:61–65; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, E. R.; Gilbert, L. J.; Tushinski, R. J.; Bartelmez, S. H. CSF-1—a mononuclear phagocyte lineage-specific hematopoietic growth factor. J. Cell. Biochem. 21:151–159; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Yagaloff, K. A.; Xie, F. Induction of c-fos in mouse bone marrow macrophages: a direct method for assessing bone marrow, cell activation. Biochem. Biophys. Res. Commun. 211:767–773; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, T.; Alsina, M. M.; Garcia, J. L.; Mundy, G. R. Differentiation of HL-60 cells into cells with the osteoclastic phenotype. Endocrinology 129:683–689; 1991.

    PubMed  CAS  Google Scholar 

  • Zhou, M. J.; Brown, E. J. CR3 (Mac-1, αMβ2, CD11b/CD18) and Fc gamma RIII cooperate in generation of a neutrophil respiratory burst: requirement for Fc gamma RIII and tyrosine phosphorylation. J. Cell Biol. 125:1407–1416; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Kawase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguro, A., Kawase, T. & Orikasa, M. NaF induces early differentiation of murine bone marrow cells along the granulocytic pathway but not the monocytic, or preosteoclastic pathway in vitro. In Vitro Cell.Dev.Biol.-Animal 39, 243–248 (2003). https://doi.org/10.1290/1543-706X(2003)039<0243:NIEDOM>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2003)039<0243:NIEDOM>2.0.CO;2

Key words

Navigation