Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth

  • Hua Ai
  • David K. Mills
  • Alexander S. Jonathan
  • Steven A. Jones
Articles Biotechnology


Silicone is a biomaterial that is widely used in many areas because of its high optical clarity, its durability, and the ease with which it can be cast. However, these advantages are counterbalanced by strong hydrophobicity. Gelatin cross-linking has been used as a hydrophilic coating on many biomaterials but not on silicone rubber. In this study two gelatin glutaraldehyde (GA) cross-linking methods were used to coat a hydrophilic membrane on silicone rubber. In method I, gelatin and GA were mixed in three different proportions (64:1, 128:1, and 256:1) before coating. In method II, a newly formed 5% gelatin membrane was cross-linked with a 2.5% GA solution. All coatings were hydrophilic, as determined from the measurement of contact angle for a drop of water on the surface. Bovine coronary arterial endothelial cells were shown to grow well on the surface modified by method II at 72 h. In method I, the cells grew well for gelatin-GA proportions of 64:1 and 128:1 at 72 h. No cell attachment on untreated silicone rubber was observed by the third d of seeding. The results indicated that both methods of gelatin-GA cross-linking provided a hydrophilic surface on silicone for endothelial cell adhesion and growth in vitro.

Key words

hydrophilic hydrophobic contact angle viscosity attachment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acton, C.; Hoffman, G.; McKenna, H.; Moloney, F. Silicone-induced foreign-body reaction after temporomandibular joint arthroplasty. Case report. Aust. Dent. J. 34:228–232; 1989.PubMedCrossRefGoogle Scholar
  2. Adams, W. P. J.; Robinson, J. B. J.; Rohrich, R. J. Lipid infiltration as a possible biologic cause of silicone gel breast implant aging. Plast. Reconstr. Surg. 101:64–68; 1998.PubMedCrossRefGoogle Scholar
  3. Boateng, S.; Lateef, S. S.; Crot, C.; Motlagh, D.; Desai, T.; Samarel, A. M.; Russell, B.; Hanley, L. Peptides bound to silicone membranes and 3D microfabrication for cardiac cell culture. Adv. Mater. 14:461–463; 2002.CrossRefGoogle Scholar
  4. Bontempo, A. R.; Rapp, J. Protein-lipid interaction on the surface of a hydrophilic contact lens in vitro. Curr. Eye Res. 16:776–781; 1997.PubMedCrossRefGoogle Scholar
  5. Carmen, R.; Mutha, S. C. Lipid absorption by silicone rubber heart valve poppets—in-vivo and in-vitro results. J. Biomed. Mater. Res. 6:327–346; 1972.PubMedCrossRefGoogle Scholar
  6. Chun, J. S.; Ha, M. J.; Jacobson, B. S. Differential translocation of protein kinase C epsilon during HeLa cell adhesion to a gelatin substratum. J. Biol. Chem. 271:13008–13012; 1996.PubMedCrossRefGoogle Scholar
  7. Crawford, J. R.; Jacobson, B. S. Extracellular calcium regulates HeLa cell morphology during adhesion to gelatin: role of translocation and phosphorylation of cytosolic phospholipase A2. Mol. Biol. Cell 9:3429–3443; 1998.PubMedGoogle Scholar
  8. Dardik, A.; Liu, A.; Ballermann, B. J. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J. Vasc. Surg. 29:157–167; 1999.PubMedCrossRefGoogle Scholar
  9. DeFife, K. M.; Shive, M. S.; Hagen, K. M.; Clapper, D. L.; Anderson, J. M. Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber. J. Biomed. Mater. Res. 44:298–307; 1999.PubMedCrossRefGoogle Scholar
  10. Digenis, G. A.; Gold, T. B.; Shah, V. P. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J. Pharm. Sci. 83:915–921; 1994.PubMedCrossRefGoogle Scholar
  11. DiTizio, V.; Karlgard, C.; Lilge, L.; Khoury, A. E.; Mittelman, M. W.; DiCosmo, F. Localized drug delivery using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug release. J. Biomed. Mater. Res. 51:96–106; 2000.PubMedCrossRefGoogle Scholar
  12. Draye, J. P.; Delaey, B.; Van de Voorde, A.; Van Den Bulcke, A.; De Reu, B.; Schacht, E. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687; 1998.PubMedCrossRefGoogle Scholar
  13. Haid, M.; Lipschultz, S. A.; Caughron, A. Silicone elastomer catheter for chronic vascular access. J. Surg. Oncol. 37:136–139; 1988.PubMedCrossRefGoogle Scholar
  14. Hartman, L. C.; Bessette, R. W.; Baier, R. E.; Meyer, A. E.; Wirth, J. Silicone rubber temporomandibular joint (TMJ) meniscal replacements: post-implant histopathologic and material evaluation. J. Biomed. Mater. Res. 22:475–484; 1988.PubMedCrossRefGoogle Scholar
  15. Hsiue, G. H.; Lee, S. D.; Chang, P. C. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea. Artif. Organs 20:1196–1207 1996.PubMedCrossRefGoogle Scholar
  16. Hsiue, G. H.; Lee, S. D.; Chang, P. C.; Kao, C. Y. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J. Biomed. Mater. Res. 42:134–147; 1998.PubMedCrossRefGoogle Scholar
  17. Hsiue, G. H.; Lee, S. D.; Wang, C. C.; Chang, P. C. The effect of plasma-induced graft copolymerization of PHEMA on silicone rubber towards improving corneal epithelial cells growth. J. Biomater. Sci. Polym. Ed. 5:205–220; 1993.PubMedGoogle Scholar
  18. Hsiue, G. H.; Lee, S. D.; Wang, C. C.; Shiue, M. H.; Chang, P. C.. Plasma-induced graft copolymerization of HEMA onto silicone rubber and TPX film improving rabbit corneal epithelial cell attachment and growth. Biomaterials 15:163–171; 1994.PubMedCrossRefGoogle Scholar
  19. Lee, S. D.; Hsiue, G. H.; Kao, C. Y.; Chang, P. C. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17:587–595; 1996.PubMedCrossRefGoogle Scholar
  20. Lin, F. H.; Yao, C. H.; Sun, J. S.; Liu, H. C.; Huang, C. W. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials 19:905–917; 1998.PubMedCrossRefGoogle Scholar
  21. Lumsden, A. B.; Chen, C.; Coyle, K. A.; Ofenloch, J. C.; Wang, J. H.; Yasuda, H. K.; Hanson, S. R. Nonporous silicone polymer coating of expanded polytetrafluoroethylene grafts reduces graft neointimal hyperplasia in dog and baboon models. J. Vasc. Surg. 24:825–833; 1996.PubMedCrossRefGoogle Scholar
  22. Maissa, C.; Franklin, V.; Guillon, M.; Tighe, B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom. Vis. Sci. 75:697–705; 1998.PubMedCrossRefGoogle Scholar
  23. Marois, Y.; Chakfe, N.; Deng, X.; Marois, M.; How, T.; King, M. W.; Guidoin, R. Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139; 1995.PubMedCrossRefGoogle Scholar
  24. Matsuda, S.; Iwata, H.; Se, N.; Ikada, Y. Bioadhesion of gelatin films cross-linked with glutaraldehyde. J. Biomed. Mater. Res. 45:20–27; 1999.PubMedCrossRefGoogle Scholar
  25. McDevitt, J. J. T.; Murphy, J. J. Renal artery catheterization using silicone tubing. Surg. Gynecol. Obstet. 135:99–100; 1972.PubMedGoogle Scholar
  26. Migonney, V.; Lacroix, M. D.; Ratner, B. D.; Jozefowicz, M. Silicone derivatives for contact lenses: silicone derivatives for contact lenses: functionalization, chemical characterization, and cell compatibility assessment. J Biomater. Sci. Polym. Ed. 7:265–275; 1995.PubMedGoogle Scholar
  27. Moss, A. H.; Vasilakis, C.; Holley, J. L.; Foulks, C. J.; Pillai, K.; McDowell, D. E. Use of a silicone dual-lumen catheter with a Dacron cuff as a long-term vascular access for hemodialysis patients. Am. J. Kidney Dis. 16:211–215; 1990.PubMedGoogle Scholar
  28. Okada, T.; Ikada, Y. Surface modification of silicone for percutaneous implantation. J. Biomater. Sci. Polym. Ed. 7:171–180; 1995.PubMedGoogle Scholar
  29. Ott, M. J.; Ballermann, B. J. Shear stress-conditioned, endothelial cell-seeded vascular grafts: improved cell adherence in response to in vitro shear stress. Surgery 117:334–339; 1995.PubMedCrossRefGoogle Scholar
  30. Park, J. H.; Park, K. D.; Bae, Y. H. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Biomaterials 20:943–953; 1999.PubMedCrossRefGoogle Scholar
  31. Silver, J. H.; Lin, J. C.; Lim, F.; Tegoulia, V. A.; Chaudhury, M. K.; Cooper, S. L. Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20:1533–1543; 1999.PubMedCrossRefGoogle Scholar
  32. Sparks, C. H. Development of a successful silicone rubber arterial graft. Ann. Thorac. Surg. 2:585–593; 1966.PubMedCrossRefGoogle Scholar
  33. Stimpson, C.; White, R.; Klein, S.; Shors, E. Patency and durability of small diameter silicone rubber vascular prostheses. Biomater. Artif. Cells Artif. Org. 17:31–43; 1989.Google Scholar
  34. Volcker, N.; Klee, D.; Hocher, H.; Langefeld, S. Functionalization of silicone rubber for the covalent immobilization of fribronectin. J. Mater. Sci. Mater. Med. 12:111–119; 2001.PubMedCrossRefGoogle Scholar
  35. Weiner, D. L.; Aiache, A. E.; Silver, L. A new soft, round, silicone gel breast implant. Plast. Reconstr. Surg. 53:174–178; 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2002

Authors and Affiliations

  • Hua Ai
    • 1
  • David K. Mills
    • 1
  • Alexander S. Jonathan
    • 2
  • Steven A. Jones
    • 1
  1. 1.Department of Biomedical Engineering & School of Biological SciencesLouisiana Tech UniversityRuston
  2. 2.Department of Molecular and Cellular Physiology, Health Sciences CenterLouisiana State UniversityRuston

Personalised recommendations