Establishment and characterization of immortalized ovine sertoli cell lines

  • Raghida Abou Merhi
  • Laurent Guillaud
  • Claude Delouis
  • Corinne Cotinot
Cell and Tissue Models


The objective of this study was to generate immortalized Sertoli cell lines from prepubertal lamb testes to facilitate investigations during the course of testicular differentiation. The Sertoli cells were enzymatically isolated and immortalized by transfection, with the sequences coding for the SV40 large T-antigen fused downstream of regulatory elements from the human vimentin gene. The different cell lines were positively stained with antibodies to vimentin and transferrin, in agreement with their Sertoli origin. Reverse transcriptase polymerase chain reaction was used to analyze the specific expression of molecular markers (clusterin/sulfated glycoprotein [SGP-2], follicle-stimulating hormone [rFSH], α-inhibin, and sex-determining region of Y chromosome) normally expressed in this cellular type. All were shown to express messenger ribonucleic acids for SGP-2, α-inhibin, WT-1, SOX9, and SF-1 (except SF-1 for clone no. 1). Moreover, we performed alkaline phosphatase and receptor tyrosine kinase p145 (c-kit) detection to ensure the absence of contamination by peritubular, germ cells, and Leydig cells. Both tests were negative for all the seven cell lines. These ovine Sertoli cell lines are the first ones obtained from livestock that exhibit specific Sertoli cell characteristics resembling different stages of phenotypic development. They provide useful in vitro model systems for toxicological investigations, coculture, and transfection experiments, making it possible to study signal transduction pathways, cell-cell interactions, and gene expression in species other than rodents.

Key words

immortalization Sertoli cell lines testis sheep 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albano, R. M.; Groome, N.; Smith, J. C. Activins are expressed in preimplantation mouse embryos and in ES and EC cells and are regulated on their differentiation. Development 117:711–723; 1993.PubMedGoogle Scholar
  2. Arango, N. A.; Lovell-Badge, R.; Behringer, R. R. Targeted mutagenesis of the endogenous mouse Mis gene promoter: in vivo definition of genetic pathways of vertebrate sexual development. Cell 99:409–419; 1999.PubMedCrossRefGoogle Scholar
  3. Armstrong, J. F.; Pritchard-Jones, K.; Bickmore, W. A.; Hastie, N. D.; Bard, J. B. L. The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 40:85–97; 1992.CrossRefGoogle Scholar
  4. Bourdon, V.; Lablack, A.; Abbe, P.; Segretain, D.; Pointis, G. Characterization of a clonal Sertoli cell line using adult PyLT transgenic mice. Biol. Reprod. 58:591–599; 1998.PubMedCrossRefGoogle Scholar
  5. Capel, B.; Hawkins, J. R.; Hirst, E.; Kioussis, D.; Lovell-Badge, R. Establishment and characterization of conditionally immortalized cells from the mouse urogenital ridge. J. Cell Sci. 109:899–909; 1996.PubMedGoogle Scholar
  6. Cate, R. H.; Mattaliano, R. J.; Hession, C.; Danahoe, P. K. Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animals cells. Cell 45:685–698; 1986.PubMedCrossRefGoogle Scholar
  7. De Santa Barbara, P.; Bonneaud, N.; Boized, B., et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol. Cell Biol. 18:6653–6665; 1998.PubMedGoogle Scholar
  8. Di Bernardino, D.; Di Meo, G. P.; Gallagher, D. S.; Hayes, H.; Iannuzi, L. ISCNDB (2000) International System for Chromosome Nomenclature of Domestic Bovids. Cytogenet. Cell Genet., in press.Google Scholar
  9. Dutertre, M.; Rey, R.; Porteu, A.; Josso, N.; Picard, J. Y. A mouse Sertoli cell line expressiong anti-Müllerian hormone and its type II receptor. Mol. Cell. Endocrinol. 136:57–65; 1997.PubMedCrossRefGoogle Scholar
  10. Foster, J. W.; Dominguez-Steglich, M. A.; Guioli, S., et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372;525–530; 1994.PubMedCrossRefGoogle Scholar
  11. Fritz, I. B. Somatic cell-germ cell relationships in mammalian testes during development and spermatogenesis. Ciba Found. Symp. 182:271–281; 1994.PubMedGoogle Scholar
  12. Gessler, M.; König, A.; Bruns, G. A. P. The genomic organization and expression of the WT1 gene. Genomics 12:807–813; 1992.PubMedCrossRefGoogle Scholar
  13. Griswold, M. D. Interactions between germ cells and Sertoli cells in the testis. Biol. Reprod. 52:211–216; 1995.PubMedCrossRefGoogle Scholar
  14. Hacker, A.; Capel, B.; Goodfellow, P.; Lovel-Badge, R. Expression of Sry, the mouse sex determining gene. Development 121:1603–1614; 1995.PubMedGoogle Scholar
  15. Hatano, O.; Takayama, K.; Imai, T.; Waterman, M. R.; Takakusu, A.; Omura, T. Morohashi, K. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787–2797; 1994.PubMedGoogle Scholar
  16. Hayes, H.; Petit, E.; Dutrillaux, B. Comparison of RBG-banded karyotypes of cattle, sheep, and goats. Cytogenet. Cell Genet. 57:51–55; 1991.PubMedGoogle Scholar
  17. Hochereau-de Reviers, M. T.; Monet-Kuntz, C.; Courot, M. Spermatogenesis and Sertoli cell numbers and function in rams and bulls. J. Reprod. Fertil. 34(Suppl.):101–114; 1987.Google Scholar
  18. Hofmann, M. C.; Narisawa, S.; Hess, R. A.; Millan, J. L. Immortalization of germ cells and somatic testicular cells using the SV40 large T antigen. Exp. Cell Res. 201:417–435; 1992.PubMedCrossRefGoogle Scholar
  19. Honda, S. I.; Morohashi, K. I.; Nomura, M.; Takeya, H.; Kitajima, M.; Omura, T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268:7494–7502; 1993.PubMedGoogle Scholar
  20. Kent, J.; Wheatley, S. C.; Andrews, J. E.; Sinclair, A. H.; Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822; 1996.PubMedGoogle Scholar
  21. Kirszbaum, L.; Sharpe, J. A.; Murphy, B.; d'Apice, A. J.; Classon, B.; Hudson, P.; Walker, I. D. Molecular cloning and characterization of the novel, human complement-associated protein, SP-40,40: a link between the complement and reproductive systems. EMBO J. 8:711–718; 1989.PubMedGoogle Scholar
  22. Kreidberg, J. A.; Sariola, H.; Loring, J. M.; Maeda, M.; Pelletier, J.; Housman, D.; Jaenisch, R. WT-1 is required for early kidney development. Cell 74:679–691; 1993.PubMedCrossRefGoogle Scholar
  23. Law, G. L.; Griswold, M. D. Activity and form of sulfated glycoprotein 2 (clusterin) from cultured Sertoli cells, testis, and epididymis of the rat. Biol. Reprod. 50:669–679; 1994.PubMedCrossRefGoogle Scholar
  24. Luo, X.; Ikeda, Y.; Parker, K. L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Philos. Trans. R. Soc. Lond. B 350:279–283; 1995.CrossRefGoogle Scholar
  25. Mather, J. P. Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol. Reprod. 23:243–252; 1980.PubMedCrossRefGoogle Scholar
  26. McGuinness, M. P.; Linder, C. C.; Morales, C. R.; Heckert, L. L.; Pikus, J.; Griswold, M. D. Relationship of a mouse Sertoli cell line (MSC-1) to normal Sertoli cells. Biol. Reprod. 51:116–124; 1994.PubMedCrossRefGoogle Scholar
  27. Monet-Kuntz, C.; Guillou, F.; Fontaine, I.; Combarnous, Y. Purification of ovine transferrin and study of the hormonal control of its secretion in enriched cultures of ovine Sertoli cells. J. Reprod. Fertil. 94:189–201; 1992.PubMedCrossRefGoogle Scholar
  28. Moore, A.; Krummen, L. A.; Mather, J. P. Inhibins, activins, their binding proteins and receptors: interactions underlying paracrine activity in the testis. Mol. Cell. Endocrinol. 100:81–86; 1994.PubMedCrossRefGoogle Scholar
  29. Morais da Silva, S.; Hacker, A.; Harley, V.; Goodfellow, P.; Swain, A.; Lovell-Badge, R. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 14:62–68; 1996.PubMedCrossRefGoogle Scholar
  30. Moura-Neto, V.; Kryszke, M. H.; Li, Z.; Vicart, P.; Lilienbaum, A.; Paulin, D. A. 28-bp negative element with multiple factor-binding activity controls expression of the vimentin-encoding gene. Gene 168:261–266; 1996.PubMedCrossRefGoogle Scholar
  31. Paquis-Flucklinger, V.; Michiels, J. F.; Vidal, F.; Alquier, C.; Pointis, G.; Bourdon, V.; Cuzin, F.; Rassoulzadegan, M. Expression in transgenic mice of the large T antigen of polyomavirus induces Sertoli cell tumours and allows the establishment of differentiated cell lines. Oncogene 8:2087–2094; 1993.PubMedGoogle Scholar
  32. Payen, E.; Pailhoux, E.; Abou Mehri, R.; Gianquinto, L.; Kirszenbaum, M.: Locatelli, A.; Cotinot, C. Characterization of ovine SRY transcript and development expression of genes involved in sexual differentiation. Int. J. Dev. Biol. 40:567–575; 1996.PubMedGoogle Scholar
  33. Peschon, J. J.; Behringer, R. R.; Cate, R. L.; Harwood, K.; Idzerda, R. L.; Brinste, R. L.; Palmiter, R. D., Directed expression of an oncogene to Sertoli cells in transgenic mice using Müllerian inhibiting substance regulatory sequences. Mol. Endocrinol. 6:1403–1411; 1992.PubMedCrossRefGoogle Scholar
  34. Pognan, F.; Masson, M. T.; Lagelle, F.; Charuel, C. Establishment of a rat Sertoli cell line that displays the morphological and some of the functional characteristics of the native cell. Cell Biol. Toxicol. 13:453–463; 1997.PubMedCrossRefGoogle Scholar
  35. Ranniko, A.; Penttila, T. L.; Zhang, F. P.; Toppari, J.; Parvinen, M.; Huhtaniemi, I. Stage-specific expression of the FSH receptor gene in the prepubertal and adult rat seminiferous epithelium. J. Endocrinol. 151:29–35; 1996.CrossRefGoogle Scholar
  36. Rassoulzadegan, M.; Paquis-Flucklinger, V.; Bertino, B. et al. Transmeiotic differentiation of male germ cells in culture. Cell 75:97–1006; 1993.CrossRefGoogle Scholar
  37. Roberts, K. P.; Banerjee, P. P.; Tindall, J. W. M.; Zirkin, B. R. Immortalization and characterization of a Sertoli cell line from the adult rat. Biol. Reprod. 53:1446–1453; 1995.PubMedCrossRefGoogle Scholar
  38. Rossi, P.; Dolci, S.; Albanesi, C.; Grimaldi, P.; Geremia, R. Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in adult testis. Mol. Reprod. Dev. 34:369–373; 1993.PubMedCrossRefGoogle Scholar
  39. Salas-Cortes, L.; Jaubert, F.; Barbaux, S.; Nessmann, C.; Bono, M. R.; Fellus, M.; McElreavey, K.; Rosemblatt, M. The human SRY protein is present in fetal and adult Sertoli cells and germ cells. Int. J. Dev. Biol. 43:135–140; 1999.PubMedGoogle Scholar
  40. Schwartz, B.; Vicart, P.; Delouis, C.; Paulin, D. Mammalian cell lines can be efficiently established in vitro upon expression of the SV40 large T antigen driven by a promoter sequence derived from the human vimentin gene. Biol. Cell 73:7–14; 1991.PubMedCrossRefGoogle Scholar
  41. Schweitzer, K. M.; Vicart, P.; Delouis, C.; Paulin, D.; Dräger, A. M.; Langenhuijsen, M. M.; Weksler, B. B. Characterization of a newly established human bone marrow endothelial cell line: distinct adhesive properties for hematopoietic progenitors compared with human umbilical vein endothelial cells. Lab. Invest. 76:25–36; 1997.PubMedGoogle Scholar
  42. Suire, S.; Fontaine, I.; Guillou, F. Transferrin gene expression and secretion in rat sertoli cells. Mol. Reprod. Dev. 48:168–175; 1997.PubMedCrossRefGoogle Scholar
  43. Swain, A.; Narvaez, V.; Burgoyne, P.; Camerino, G.; Lovell-Badge, R. Daxl antagonizes Sry action in mammalian sex determination. Nature 391:761–767; 1998.PubMedCrossRefGoogle Scholar
  44. Tremblay, J. J.; Viger, R. S. Nuclear receptor Dax-1 represses the transcriptional cooperation between GATA-4 and SF-1 in Sertoli cells. Biol. Reprod. 64:1191–1199; 2001.PubMedCrossRefGoogle Scholar
  45. Vicart, P.; Viger, A., et al. Immortalization of multiple cell types from transgenic mice using a transgene containing the vimentine prometer and a conditional oncogene. Exp. Cell Res. 214:35–45; 1994.PubMedCrossRefGoogle Scholar
  46. Walther, N.; Jansen, M.; Ergün, S.; Kascheike, B.; Ivell, R. Sertoli cell lines established from H-2Kb-tsA58 transgenic mice differentially regulate the expression of cell-specific genes. Exp. Cell Res. 225:411–421; 1996.PubMedCrossRefGoogle Scholar
  47. Yang, F.; Lum, J. B.; McGill, J. R.; Moore, C. M.; Naylor, S. L.; van Bragt, P. H.; Baldwin, W. D.; Bowman, B. H. Human transferrin: cDNA characterization and chromosomal localization. Proc. Natl. Acad. Sci. USA 81:2752–2756, 1984.PubMedCrossRefGoogle Scholar
  48. Yarney, T. A.; Sairam, M. R.; Khan, H.; Ravindranath, N.; Payne, G. S.; Seidah, N. G. Molecular cloning and expression of the ovine testicular follicle stimulating hormone receptor. Mol. Cell. Endocrinol. 93:219–226; 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  • Raghida Abou Merhi
    • 2
  • Laurent Guillaud
    • 1
  • Claude Delouis
    • 1
  • Corinne Cotinot
    • 2
  1. 1.Laboratoire de Génétique Moléculaire et CellulaireINRA-ENVAMaisons-AlfortFrance
  2. 2.Unité de Biologie du développement et Biotechnologies, Bat. BiotechnologiesINRAJouy en JosasFrance

Personalised recommendations