Microarray analysis of genes differentially expressed in hepG2 cells cultured in simulated microgravity: Preliminary report

  • Vladimir I. Khaoustov
  • Diana Risin
  • Neal R. Pellis
  • Boris Yoffe
Special-Nasa/Johnson Space Center Workshop NASA Biotechnology: Cell Science in Microgravity


Developed at NASA, the rotary cell culture system (RCCS) allows the creation of unique microgravity environment of low shear force, high-mass transfer, and enables three-dimensional (3D) cell culture of dissimilar cell types. Recently we demonstrated that a simulated microgravity is conductive for maintaining long-term cultures of functional hepatocytes and promote 3D cell assembly. Using deoxyribonucleic acid (DNA) microarray technology, it is now possible to measure the levels of thousands of different messenger ribonucleic acids (mRNAs) in a single hybridization step. This technique is particularly powerful for comparing gene expression in the same tissue under different environmental conditions. The aim of this research was to analyze gene expression of hepatoblastoma cell line (HepG2) during early stage of 3D-cell assembly in simulated microgravity. For this, mRNA from HepG2 cultured in the RCCS was analyzed by deoxyribonucleic acid microarray. Analyses of HepG2 mRNA by using 6K glass DNA microarray revealed changes in expression of 95 genes (overexpression of 85 genes and downregulation of 10 genes). Our preliminary results indicated that simulated microgravity modifies the expression of several genes and that microarray technology may provide new understanding of the fundamental biological questions of how gravity affects the development and function of individual cells.

Key words

DNA microarray microgravity gene expression cell cultures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, H.; Kanai, S.; Hirano, M., et al. An improved quantitative RT-PCR fluorescent method for analysis of gene transcripts in the STS-65 space shuttle experiment. J. Biotechnol. 47(2–3):325–333; 1996.PubMedCrossRefGoogle Scholar
  2. Alwine, J. C.; Kemp, D. J.; Stark, G. R. Method for detection of specific RNAs in agarose gets by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl. Acad. Sci. USA 74:5350–5354; 1977.PubMedCrossRefGoogle Scholar
  3. Carmeliet, G.; Nys, G.; Stockmans, I.; Bouillon, R. Gene expression related to the differentiation of osteoblastic cells is altered by microgravity. Bone 22 (Suppl. 5):139S-143S; 1998.PubMedCrossRefGoogle Scholar
  4. Hammond, T. G.; Lewis, F. C.; Goodwin, T. J., et al. Gene expression in space. Nat. Med. 5(4):359; 1999.PubMedCrossRefGoogle Scholar
  5. Harrington, C. A.; Rosenow, C.; Retief, J. Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3(3):285–291; 2000.PubMedCrossRefGoogle Scholar
  6. Howell, S. B. DNA microarrays for analysis of gene expression. Mol. Urol. 3(3):295–300; 1999.PubMedGoogle Scholar
  7. Hsiao, L. L.; Stears, R. L.; Hong, R. L.; Gullans, S. R. Prospective use of DNA microarrays for evaluating renal function and disease. Curr. Opin. Nephrol. Hypertens. 9(3):253–258; 2000.PubMedCrossRefGoogle Scholar
  8. Jessup, J. M.; Goodwin, T. J.; Spaulding, G. F. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51(3):290–300; 1993.PubMedCrossRefGoogle Scholar
  9. Khaoustov, V. I.; Darlington, G. J.; Soriano, H. E., et al. Induction of three-dimensional assembly of human liver cells by simulated microgravity. In Vitro Cell. Dev. Biol. 35(9):501–509; 1999.Google Scholar
  10. Lennon, G. G.; Lehrach, H. Hybridization analyses of arrayed cDNA libraries. Trends Genet. 7:314–317; 1991.PubMedGoogle Scholar
  11. Liang, P.; Pardee, A. B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–997; 1992.PubMedCrossRefGoogle Scholar
  12. Schena, M.; Shalon, D.; Heller, R.; Chai, A.; Brown, P. O.; Davis, R. W. Proc. Natl. Acad. Sci. USA 93:10614–10619; 1996.PubMedCrossRefGoogle Scholar
  13. Spaulding, G. F.; Jessup, J. M.; Goodwin, T. J. Advances in cellular construction. J. Cell. Biochem. 51(3):249–251; 1993.PubMedCrossRefGoogle Scholar
  14. Thomason, D. B.; Morrison, P. R.; Oganov, V.; Ilyina-Kakueva, E.; Booth, F. W.; Baldwin, K. M. Altered actin and myosin expression in muscle during exposure to microgravity. J. Appl. Physiol. 73 (Suppl. 2):90S-93S; 1992.PubMedGoogle Scholar
  15. van Hal, N. L. W.; Vorst, O.; van Houwelingen, A. M., et al. The application of DNA microarrays in gene expression analysis. J. Biotechnol. 78(3):271–280; 2000.PubMedCrossRefGoogle Scholar
  16. Velculescu, V. E.; Zhang, L.; Vogelstein, B.; Kinzier, K. W. Serial analysis of gene expression. Science 270:484–487; 1995.PubMedCrossRefGoogle Scholar
  17. Wang, T.; Hopkins, D.; Schmidt, C., et al. Identification of genes differentially over-expressed in lung squamous cell carcinoma using combination of cDNA subtraction and microarray analysis. Oncogene 19(12):1519–1528; 2000.PubMedCrossRefGoogle Scholar
  18. Yoffe, B.; Darlington, G.; Risin, D.; Pellis, N. R.; Khaoustov, V. I. Cultures of human liver cells in microgravity environment. Adv. Space Res. 24(6):829–836; 1999.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2001

Authors and Affiliations

  • Vladimir I. Khaoustov
    • 1
  • Diana Risin
    • 2
  • Neal R. Pellis
    • 3
  • Boris Yoffe
    • 1
  1. 1.Departments of Medicine, Veterans Affairs Medical CenterBaylor College of MedicineHouston
  2. 2.Wyle LaboratoriesBiotechnology ProgramHouston
  3. 3.NASABiotechnology ProgramHouston

Personalised recommendations