Estrogen mitogenic action. I. Demonstration of estrogen-dependent MTW9/PL2 carcinogen-induced rat mammary tumor cell growth in serum-supplemented culture and technical implications

Cell Growth/Differentiation/Apoptosis

Summary

The MTW9/PL cell line was established by our laboratory in culture from the carcinogen-induced hormone-responsive MT-W9A rat mammary tumor of a Wistar-Furth (W/Fu) rat. This tumor formed estrogen, androgen, and progesterone responsive tumors in W/Fu rats (Sirbasku, D. A., Cancer Res. 38:1154–1165; 1978). It was later used to derive the MTW9/PL2 cell population which was also estrogen-responsive in vivo (Danielpour, D., et al., In Vitro Cell. Dev. Biol. 24∶42–52; 1988). In the study presented here, we describe serum-supplemented culture conditions in which the MTW9/PL2 cells demonstrate≥80-fold steroid hormone growth responses. All sera used were steroid hormone-depleted by charcoal-dextran treatment at 34°C. The studies were done with horse serum as well as serum from other mammalian species. The growth of the MTW9/PL2 cells was biphasic in response to hormone-depleted serum. Concentrations of ≤5% (v/v) promoted optimum growth. Above this concentration, serum was inhibitory. Concentrations ≥40% (v/v) inhibited growth altogether. Addition of 1.0×10−13−1.0×10−8 M 17β-estradiol (E2) reversed the inhibition completely. At 1.0×10−8 M, estrone, estriol and diethylstilbestrol promoted growth as well as E2. Testosterone and dihydrotestosterone promoted growth only at ≥10−7 M. Progesterone was effective only at≥10−6 M. Cortisol was ineffective. Labeled-hormone-binding analysis and Western immunoblotting documented that MTW9/PL2 cells had estrogen and progesterone receptors but not androgen or cortisol receptors. Estrogen treatment of MTW9/PL2 cells induced a concentration and time dependent increase in progesterone receptors. We conclude (1) the MTW9/PL2 population is the first highly steroid hormone-responsive rat mammary tumor cell line to be established in culture from a carcinogen-induced tumor, and (2) sera from a number of species including horse, rat and human contain an inhibitor which mediates estrogen sensitive MTW9/PL2 cell growth in culture.

Key words

carcinogen-induced rat mammary tumors estrogens androgens progesterone glucocorticoid steroid hormone receptors growth regulation serum inhibitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amara, J. F.; Dannies, P. S. 17β-estradiol has a biphasic effect on GH cell growth. Endocrinology 112:1141–1143; 1983.PubMedGoogle Scholar
  2. Anderson, C. H.; Beattie, C. W. Cellular kinetics of rat mammary gland terminal end bud epithelium exposed to N-methyl-N-nitrosourea in vivo. Cancer Res. 52:5076–5081; 1992.PubMedGoogle Scholar
  3. Anderson, C. H.; Hussain, R. A.; Han, M. C., et al. Estrous cycle dependence of nitrosomethylurea (NMU)-induced preneoplastic lesions in rat mammary gland. Cancer Lett. 56:77–84; 1991.PubMedCrossRefGoogle Scholar
  4. Arafah, B. M.; Gullino, P. M.; Manni, A., et al. Effect of ovariectomy on hormone receptors and growth of N-nitrosomethylurea-induced mammary tumors in the rat. Cancer Res. 40:4628–4630; 1980.PubMedGoogle Scholar
  5. Baxter, J. D.; Higgins, S. J.; Rousseau, G. G. Measurement of specific binding of a ligand in intact cells: dexamethasone binding by cultured hepatoma cells. Methods Enzymol. 36:240–248; 1975.PubMedCrossRefGoogle Scholar
  6. Bennett, D. C.; Peachey, L. A.; Durbin, H., et al. A possible mammary stem cell line. Cell 15:283–298; 1978.PubMedCrossRefGoogle Scholar
  7. Berrevoets, C. A.; Veldscholte, J.; Mulder, E. Effects of antiandrogens on transformation and transcription activation of wild-type and mutated (LNCaP) androgen receptors. J. Steroid Biochem. Mol. Biol. 46:731–736; 1993PubMedCrossRefGoogle Scholar
  8. Berthois, Y.; Katzenellenbogen, J. A.; Katzenellenbogen, B. S. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83:2496–2500; 1986.PubMedCrossRefGoogle Scholar
  9. Bielschowsky, F. Distant tumours produced by 2-amino- and 2-acetamino-fluorene. Br. J. Exp. Pathol. 25:1–4; 1944.Google Scholar
  10. Bielschowsky, F. Comparison of the tumours produced by 2-acetyl-amino-fluorene in Piebald and Wistar rats. Br. J. Exp. Pathol. 27:135–139; 1946a.Google Scholar
  11. Bielschowsky, F. The carcinogenic action of 2-acetyl-amino-fluorene and related compounds. Br. Med. Bull. 4:382–384; 1946b.Google Scholar
  12. Bindal, R. D.; Carlson, K. E.; Katzenellenbogen, B. S., et al. Lipophilic impurities, not phenosulfonphthalein, account for the estrogenic acitivity in commercial preparations of phenol red. J. Steroid Biochem. 31:287–293; 1988.PubMedCrossRefGoogle Scholar
  13. Bindal, R. D.; Katzenellenbogen, J. A. Bis(4-hydroxyphenyl)[2-(phenoxysulfonyl) phenyl]methane: isolation and structural elucidation of a novel estrogen from commercial preparations of phenol red (phenosulfonphthalein). J. Med. Chem. 31:1978–1983; 1988.PubMedCrossRefGoogle Scholar
  14. Birnbaumer, M.; Schrader, W. T.; O'Malley, B. W. Photoaffinity labeling of the chick progesterone receptor proteins. Similar hormone binding domains detected after removal of proteolytic interference. J. Biol. Chem. 258:1637–1644; 1983.PubMedGoogle Scholar
  15. Boylan, E. S.; Wittliff, J. C. Specific estrogen binding in rat mammary tumors induced by 7,12-dimethylbenzanthracene. Cancer Res. 35:506–511; 1975.PubMedGoogle Scholar
  16. Braun, R. J.; Pezzuto, J. M.; Anderson, C. H., et al. Estrous cycle status alters N-methyl-N-nitrosourea (NMU)-induced rat mammary tumor growth and regression. Cancer Lett. 48:205–211; 1989.PubMedCrossRefGoogle Scholar
  17. Brolin, J.; Skoog, L.; Ekman, P. Immunohistochemistry and biochemistry in detection of androgen, progesterone, and estrogen receptors in benign and malignant human prostatic tissue. The Prostate 20:281–295; 1992.PubMedCrossRefGoogle Scholar
  18. Cantarow, A.; Stasney, J.; Paschkis, K. E. The influence of sex hormones on mammary tumors induced by 2-acetamino-fluorene. Cancer Res. 8: 412–417; 1948.PubMedGoogle Scholar
  19. Castagnetta, L.; Miceli, M. D.; Sorci, C. M., et al. Growth of LNCaP human prostate cancer cells is stimulated by estradiol via its own receptor. Endocrinology 136:2309–2319; 1995.PubMedCrossRefGoogle Scholar
  20. Chan, P.-C.; Tsuang, J.; Head, J., et al. Effects of estradiol and prolactin on growth of rat mammary adenocarcinoma cells in monolayer cultures. Proc. Soc. Exp. Biol. Med. 151:362–365; 1976.PubMedGoogle Scholar
  21. Clark, J. H.; Markaverich, B. M. The agonistic and antagonistic effects of short acting estrogens: a review. Pharmacol. Ther. 21:429–453; 1983.PubMedCrossRefGoogle Scholar
  22. Costlow, M. E.; Buschow, R. A.; Richert, N. J., et al. Prolactin and estrogen binding in transplantable hormone-dependent and autonomous rat mammary carcinoma. Cancer Res. 35:970–974; 1975.PubMedGoogle Scholar
  23. Danielpour, D.; Riss, T. L.; Ogasawara, M., et al. Growth of MTW9/PL2 estrogen-responsive rat mammary tumor cells in hormonally defined serum-free media. In Vitro Cell. Dev. Biol. 24:42–52; 1988.PubMedGoogle Scholar
  24. Dao, T. L. Role of ovarian hormones in initiating the induction of mammary cancer in rats by polynuclear hydrocarbons. Cancer Res. 22:973–981; 1962.PubMedGoogle Scholar
  25. Dao, T. L. Carcinogenesis of mammary gland in rat. Prog. Exp. Tumor Res. 5:157–216; 1964.PubMedGoogle Scholar
  26. Dao, T. L. The role of ovarian steroid hormones in mammary carcinogenesis. Banbury Rep. 8:281–298; 1981.Google Scholar
  27. Dao, T. L.; Sunderland, J. Mammary carcinogenesis by 3-methylcholanthrene. I. Hormonal aspects in tumor induction and growth. J. Natl. Cancer Inst. 23:567–581; 1959.PubMedGoogle Scholar
  28. DeSombre, E. R.; Kledzik, G.; Marshall, S., et al. Estrogen and prolactin receptor concentrations in rat mammary tumors and response to endocrine ablation. Cancer Res. 36:354–358; 1976.PubMedGoogle Scholar
  29. Dure, L. S.; Schrader, W. T.; O'Malley, B. W. Covalent attachment of a progestational steroid to chick oviduct progesterone receptor by photo-affinity labeling. Nature (Lond) 238:784–786; 1980.CrossRefGoogle Scholar
  30. Eastment, C. T.; Sirbasku, D. A. Human platelet lysate contains growth factor activities for established cell lines derived from various tissues of several species. In Vitro 16:694–705; 1980.PubMedGoogle Scholar
  31. Eby, J. E.; Sato, H.; Sirbasku, D. A. Preparation of iron deficient tissue culture medium by deferoxamine-Sepharose treatment and application to the differential actions of apotransferrin and diferric transferrin. Anal. Biochem. 203:317–325; 1992.PubMedCrossRefGoogle Scholar
  32. Eby, J. E.; Sato, H.; Sirbasku, D. A. Apotransferrin stimulation of thyroid hormone dependent rat pituitary tumor cell growth in serum-free chemically defined medium: role of Fe(III) chelation. J. Cell. Physiol. 156:588–600; 1993.PubMedCrossRefGoogle Scholar
  33. el-Bayoumy, K. Environmental carcinogens that may be involved in human breast cancer etiology. Chem. Res. Toxicol. 5:585–590; 1992.PubMedCrossRefGoogle Scholar
  34. el-Bayoumy, K.; Chae, Y.-H.; Upadhyaya, P., et al. Comparative tumorigenicity of benzo[a]pyrene, 1-nitropyrene and 2-amino-1-methyl-6-phenylimidazo[4,4-b]pyridine administered by gavage to female CD rats. Carcinogenesis 16:431–434; 1995.PubMedCrossRefGoogle Scholar
  35. el-Bayoumy, K.; Rivenson, A.; Johnson, B., et al. Comparative tumorigenecity of 1-nitropyrene, 1-nitrosopyrene and 1-aminopyrene administered by gavage to Sprague-Dawley rats. Cancer Res. 48:4256–4260; 1988.PubMedGoogle Scholar
  36. Faber, P. W.; Kuiper, G. G. J. M.; van Rooji, H. C. J., et al. The N-terminal domain of the human androgen receptor is encoded by one large exon. Mol. Cell. Endocrinol. 61:257–262; 1989.PubMedCrossRefGoogle Scholar
  37. Fernig, D. G.; Barraclough, R.; Ke, Y., et al. Ectopic production of heparin-binding growth factors and receptors for basic fibroblast growth factor by rat mammary epithelial cell lines derived from malignant metastatic tumours. Int. J. Cancer 54:629–635; 1993.PubMedCrossRefGoogle Scholar
  38. Garlick, D. S.; Sukumar, S.; Barbacid, M., et al. Generation of monoclonal antibodies specific for ras p21 Glu-12 oncoproteins: detection in carcinogen-induced mammary carcinomas. Hybridoma 10:95–102; 1991.PubMedCrossRefGoogle Scholar
  39. Georgiadis, P.; Smith, C. A.; Swann, P. F. Nitrosamine-induced cancer: selective repair and conformational differences between O6-methylguanine residues in different positions in and around codon 12 of rat H-ras. Cancer Res. 51:5843–5850; 1991.PubMedGoogle Scholar
  40. Geradts, J.; Richards, J.; Edery, M., et al. Heterogeneity in the hormonal responsiveness of clones derived from the 13762NF rat mammary tumor. Cancer Res. 46:1920–1927; 1986.PubMedGoogle Scholar
  41. Gibson, S. L.; Hilf, R. Influence of hormonal alteration of host on estrogen binding capacity in 7,12-dimethylbenz(a)anthracene-induced mammary tumors. Cancer Res. 36:3736–3741; 1976.PubMedGoogle Scholar
  42. Grubbs, C. J.; Peckham, J. C.; Cato, K. D. Mammary carcinogenesis in rat in relation to age at time of N-nitroso-methylurea administration. J. Natl. Cancer Inst. 70:209–212; 1983.PubMedGoogle Scholar
  43. Gullino, P. M.; Pettigrew, H. M.; Grantham, F. H. N-Nitrosomethyl-urea as mammary gland carcinogen in rat. J. Natl. Cancer Inst. 54:401–409; 1975.PubMedGoogle Scholar
  44. Harmon, J. T.; Hilf, R. Identification and characterization of the insulin receptor in the R3230AC mammary adenocarcinoma of the rat. Cancer Res. 36:3993–4000; 1976.PubMedGoogle Scholar
  45. Haslam, S. Z.; Shyamala, G. Effect of oestradiol on progesterone receptors in normal mammary glands and its relationship with lactation. Biochem. J. 182:127–131; 1979a.PubMedGoogle Scholar
  46. Haslam, S. Z.; Shyamala, G. Progesterone receptors in normal mammary glands of mice: characterization and relationship to development. Endocrinology 105:786–795; 1979b.PubMedGoogle Scholar
  47. Horoszwicz, J. S.; Leong, S. S.; Kawinski, E., et al. LNCaP model of human prostatic carinoma. Cancer Res. 43:1809–1818; 1983.Google Scholar
  48. Horwitz, K. B.; Alexander, P. S. In situ photolinked nuclear progesterone receptors of human breast cancer cells: subunit molecular weights after transformation and translocation. Endocrinology 113:2195–2201; 1983.PubMedGoogle Scholar
  49. Horwitz, K. B.; McGuire, W. L. Estrogen control of progesterone receptor in human breast cancer. J. Biol. Chem. 253:2223–2228; 1978a.PubMedGoogle Scholar
  50. Horwitz, K. B.; McGuire, W. L. Nuclear mechanisms of estrogen action. Effects of estradiol and antiestrogens on estrogen receptors and nuclear receptor processing. J. Biol. Chem. 253:8185–8191; 1978b.PubMedGoogle Scholar
  51. Horwitz, K. B.; Wei, L. L.; Sedlacek, S. M., et al. Progestin action and progesterone receptor structure in human breast cancer: a review. Recent Prog. Horm. Res. 41:249–346; 1985.PubMedGoogle Scholar
  52. Horwitz, K. B.; Zava, D. T.; Thilagar, A. K., et al. Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res. 38:2434–2437; 1978.PubMedGoogle Scholar
  53. Huggins, C.; Briziarelli, G.; Sutton, H., Jr. Rapid induction of mammary carcinoma in the rat and the influence of hormones. J. Exp. Med. 109:25–42; 1959.PubMedCrossRefGoogle Scholar
  54. Huggins, C.; Grand, L. C.; Brillantes, F. B. Mammary cancer induced by a single feeding of polynuclear hydrocarbons, and its suppression. Nature (Lond) 189:204–207; 1961.CrossRefGoogle Scholar
  55. Huggins, C.; Moon, R. C.; Morii, S. Extinction of experimental mammary cancer. I. Estradiol-17β and progesterone. Proc. Natl. Acad. Sci. USA. 48:379–386; 1962.PubMedCrossRefGoogle Scholar
  56. Ilenchuk, T. T.; Walters, M. R. Rat uterine progesterone receptor analyzed by [3H] R5020 photoaffinity labeling: evidence that the A and B subunits are not equimolar. Endocrinology 120:1449–1456; 1987.PubMedGoogle Scholar
  57. Karey, K. P.; Sirbasku, D. A. Differential responsiveness of human breast cancer cell lines MCF-7 and T47D to growth factors and 17β-estradiol. Cancer Res. 48:4083–4092; 1988.PubMedGoogle Scholar
  58. Keydar, J.; Chen, L.; Karby, S., et al. Establisment and characterization of a cell line of human breast carcinoma origin. Eur. J. Cancer 15:659–670; 1979.PubMedGoogle Scholar
  59. Kim, U.; Furth, J. Relation of mammotropes to mammary tumors. IV. Development of highly hormone-dependent mammary tumors. Proc. Soc. Exp. Biol. Med. 105:490–492; 1960.PubMedGoogle Scholar
  60. Kim, U.; Furth, J.; Yannopoulos, K. Observations on hormonal control of mammary cancer. I. Estrogen and mammotropes. J. Natl. Cancer Inst. 31:233–259; 1963.PubMedGoogle Scholar
  61. Kirkland, W. L.; Sorrentino, J. M.; Sirbasku, D. A. Control of cell growth III. Demonstration of the direct mitogenic effect of thyroid hormones on an estrogen-dependent rat pituitary tumor cell line. J. Natl. Cancer Inst. 56:1159–1164; 1976.PubMedGoogle Scholar
  62. Koike, S.; Sakai, M.; Muramatsu, M. Molecular cloning and characterization of rat estrogen receptor cDNA. Nucleic Acids Res. 15:2499–2513; 1987.PubMedCrossRefGoogle Scholar
  63. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature (Lond) 227:680–685; 1970.CrossRefGoogle Scholar
  64. Leavitt, W. W.; Chen, T. J.; Allen, T. C. Regulation of progesterone receptor formation by estrogen action. Ann. N.Y. Acad. Sci. 286:210–255; 1977.PubMedCrossRefGoogle Scholar
  65. Leland, F. E.; Danielpour, D.; Sirbasku, D. A. Studies of the endocrine, paracrine, and autocrine control of mammary tumor cell growth. In: Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds. Cold Springer Harbor Conferences on Cell Proliferation. Vol. 9. Growth of cells in hormonally defined media. New York: Cold Spring Harbor Press; 1982:741–750.Google Scholar
  66. Leland, F. E.; Iio, M.; Sirbasku, D. A. Hormone-dependent cell lines. In: Sato, G. H., ed. Functionally differentiated cell lines. New York: Liss/Wiley; 1981:1–46.Google Scholar
  67. Lessey, B. A.; Alexander, P. S.; Horwitz, K. B. The subunit structure of human breast cancer progesterone receptors: characterization by chromatography and photoaffinity labeling. Endocrinology 112:1267–1274; 1983.PubMedCrossRefGoogle Scholar
  68. Lewis, D.; Hallowes, R. C. Correlation between the effects of hormones on the synthesis of DNA in explants from induced rat mammary tumors and the growth of the tumors. J. Endocrinol. 62:225–240; 1974.PubMedGoogle Scholar
  69. Lichtner, R. B.; Julian, J. A.; North, S. M., et al. Coexpression of cytokeratins characteristic for myoepithelial and luminal cell lineages in rat 13762NF mammary adenocarcinoma tumors and their spontaneous metastases. Cancer Res. 51:5943–5950; 1991.PubMedGoogle Scholar
  70. Lichtner, R. B.; Kaufmann, A. M.; Kittmann, A., et al. Ligand mediated activation of ectopic EGF receptor promotes matrix protein adhesion and lung colonization of rat mammary adenocarcinoma. Onocgen 10: 1823–1832; 1995.Google Scholar
  71. Liehr, J. L.; Sirbasku, D. A. Estrogen-dependent kidney tumors. In: Taub, M., ed. Tissue culture of epithelial cells. New York: Plenum Press; 1985:205–234.Google Scholar
  72. Lykkesfeldt, A. E., Briand, P. Indirect mechanism of oestradiol stimulation of cell proliferation of human breast cancer cell lines. Br. J. Cancer 53:29–35; 1986.PubMedGoogle Scholar
  73. MacIndoe, J. H.; Woods, G. R.; Etre, L. A. The specific binding of estradiol and estrone and the subsequent distribution of estrogen-receptor complexes within MCF-7 human breast cancer cells. Steroids 39:245–258; 1982.PubMedCrossRefGoogle Scholar
  74. MacLeod, R. M.; Allen, M. S.; Hollander, V. P. Hormonal requirements for the growth of mammary adenocarcinoma (MTW9) in rats. Endocrinology 75:249–258; 1964.PubMedGoogle Scholar
  75. Manni, A.; Rainieri, J.; Arafah, B. M., et al. Role of estrogen and prolactin in the growth and receptor levels of N-nitrosourea-induced rat mammary tumors. Cancer Res. 42:3492–3495; 1982.PubMedGoogle Scholar
  76. McGuire, W. L.; Julian, J. A. Comparison of macromolecular binding of estradiol in hormone-dependent and hormone-independent rat mammary carcinoma. Cancer Res. 31:1140–1445; 1971.Google Scholar
  77. Moreno-Cuevas, J. E.; Sirbasku, D. A. Estrogen mitogenic action. III. Is phenol red a “red berring”?. In Vitro Cell. Dev. Biol. 36A:447–464; 2000.CrossRefGoogle Scholar
  78. Natoli, C.; Sica, G.; Natoli, V., et al. Two new estrogen-supersensitive variants of the MCF-7 human breast cancer cell line. Breast Cancer Res. Treat. 3:23–32; 1983.PubMedCrossRefGoogle Scholar
  79. Oakley, C. S.; Welsch, M. A.; Zhai, Y.-F., et al. Comparative abilities of athymic nude mice and severe combined immune deficient (SCID) mice to accept transplants to induced rat mammary carcinomas: enhanced transplantation efficiency of those rat mammary carcinomas that have elevated expression of neu oncogene. Int. J. Cancer 53: 1002–1007; 1993.PubMedCrossRefGoogle Scholar
  80. Ogasawara, M.; Sirbasku, D. A. A new serum-free method of measuring growth factor activities for human breast cancer cells in culture. In Vitro Cell. Dev. Biol. 24:911–920; 1988.PubMedGoogle Scholar
  81. Page, M. J.; Field, K. J.; Everett, N. P., et al. Serum regulation of the estrogen responsiveness of the human cancer cell line MCF-7. Cancer Res. 43:1244–1250; 1983.PubMedGoogle Scholar
  82. Pasteels, J.-L.; Heuson, J.-C.; Heuson-Stiennon, J., et al. Effects of insulin, prolactin, progesterone, and estradiol on DNA synthesis in organ culture of 7,12-dimethyl benz(a) anthracene-induced rat mammary tumors. Cancer Res. 36:2162–2170; 1976.PubMedGoogle Scholar
  83. Platt, A. E. Styrene plastics. In: Kirk, R. E.; Othmer, D. F., ed. Encyclopedia of chemical technology, 3rd ed, Vol. 26. New York: Wiley; 1978:801–847.Google Scholar
  84. Prins, G. S.; Birch, L.; Greene, G. L. Androgen receptor localization in different cell types of the adult rat prostate. Endocrinology 129:3187–3199; 1991.PubMedGoogle Scholar
  85. Riss, T. L.; Ogasawara, M.; Karey, K. P., et al. Use of serum-free hormonally defined media to evaluate the effects of growth factors and inhibitors on proliferation of estrogen-responsive mammary and pituitary tumor cells in culture. J. Tissue Cult. Methods 10:133–150; 1986.CrossRefGoogle Scholar
  86. Riss, T. L.; Sirbasku, D. A. Purification and identification of transferrin as a major pituitary derived mitogen for MTW9/PL2 rat mammary tumor cells. Int Vitro Cell. Dev. Biol. 23:841–849; 1987.Google Scholar
  87. Riss, T. L.; Sirbasku, D. A. Rat pituitary tumor cells in serum-free culture. II. Serum factor and thyroid hormone requirements for estrogen responsive growth. In Vitro Cell. Dev. Biol. 25:136–142; 1989.PubMedGoogle Scholar
  88. Rose, D. P.; Pruitt, B.; Stauber, P., et al. Influence of dosage schedule on the biological characteristics of N-nitrosomethylurea-induced rat mammary tumors. Cancer Res. 40:235–239; 1980.PubMedGoogle Scholar
  89. Rudland, P. S. Stem cells and the development of mammary cancers in experimental rats and in humans. Cancer Metastasis Rev. 6:55–83; 1987.PubMedCrossRefGoogle Scholar
  90. Rudland, P. S. Use of peanut lectin and rat mammary stem cell lines to identify a cellular differentiation pathway for the alveolar cell in the rat mammary gland. J. Cell. Physiol. 153:157–168; 1992.PubMedCrossRefGoogle Scholar
  91. Russo, J.; Tait, L.; Russo, I. H. Susceptibility of the mammary gland to carcinogenesis. III. The cell origin of rat mammary carcinoma. Am. J. Pathol. 113:50–66; 1983.PubMedGoogle Scholar
  92. Russo, J.; Tay, L. K.; Russo, I. H. Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Res. Treat. 2:5–73; 1982.PubMedCrossRefGoogle Scholar
  93. Sato, H.; Eby, J. E.; Sirbasku, D. A. Iron is deleterious to hormone-responsive pituitary cell growth in serum-free defined medium. In Vitro Cell. Dev. Biol. 27A:599–602; 1991.PubMedGoogle Scholar
  94. Sato, H.; Eby, J. E.; Sirbasku, D. A. Apotransferrins from several species promote thyroid hormone-dependent rat pituitary tumor cell growth in iron-restricted serum-free defined culture. Mol. Cell. Endocrinol. 83:239–251; 1992.PubMedCrossRefGoogle Scholar
  95. Scatchard, G. The attraction of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51:660–672; 1949.CrossRefGoogle Scholar
  96. Schuurmans, A. L. G.; Bolt, J.; Voorhorst, M. M., et al. Regulation of growth and epidermal growth factor receptor levels of LNCaP prostate tumor cells by different steroids. Int. J. Cancer 42:917–922; 1988.PubMedGoogle Scholar
  97. Shafie, S. M.; Hilf, R. Relationship between insulin and estrogen binding to growth responses in 7,12-dimethyl benz(a) anthracene-induced rat mammary tumors. Cancer Res. 38:759–764; 1978.PubMedGoogle Scholar
  98. Shay, H.; Harris, C.; Gruenstein, M. Influence of sex hormones on the incidence and form of tumors produced in male or female rats by gastric instillation of methyl-cholanthrene. J. Natl. Cancer Inst. 13:307–331; 1952.PubMedGoogle Scholar
  99. Sirbasku, D. A. Estrogen-induction of growth factors specific for hormone-responsive mammary, pituitary, and kidney tumor cells. Proc. Natl Acad. Sci. USA. 75:3786–3790; 1978a.PubMedCrossRefGoogle Scholar
  100. Sirbasku, D. A. Hormone-responsive growth in vitro of a tissue culture cell line established from the MT-W9A rat mammary tumor. Cancer Res. 38:1154–1165; 1978b.PubMedGoogle Scholar
  101. Sirbasku, D. A.; Kirkland, W. L. Control of cell growth. IV. Growth properties of a new cell line established from an estrogen-dependent kidney tumor of the Syrian hamster. Endocrinology 98:1260–1272; 1976.PubMedGoogle Scholar
  102. Sirbasku, D. A.; Moreno-Cueno-Cuevas, J. E.; Walterscheid, J. P. Serum factor regulation of estrogen responsive mammary tumor cell growth [abstract]. Proceedings of the 1997 Meeting of the “Department of Defense Breast Cancer Research Program: An Era of Hope”, pp. 739–740, Washington, DC, 31 October–4 November 1997.Google Scholar
  103. Soto, A. M.; Justicia, H.; Wray, J. W., et al. P-Nonyl-phenol: an estrogenic xenobiotic release from “modified” polystyrene. Environ. Health Perspect. 92:167–173; 1991.PubMedCrossRefGoogle Scholar
  104. Soto, A. M.; Murai, J. T.; Siiteri, P. K., et al. Control of cell proliferation: evidence for negative control on estrogen-sensitive T47D human breast cancer cells. Cancer Res. 46:2271–2275; 1986.PubMedGoogle Scholar
  105. Soto, A. M.; Sonnenschein, C. Cell proliferation of estrogen-sensitive cells: the case for negative regulation. Endocr. Rev. 8:44–52; 1987.PubMedCrossRefGoogle Scholar
  106. Stasney, J.; Paschkis, K. E.; Cantarow, A., et al. Neoplasmas in rats with 2-acetaminofluorene and sex hormones. Cancer Res. 7:356–362; 1947.PubMedGoogle Scholar
  107. Sterntal, A.; Domingues, J. M.; Weissman, C., et al. Pituitary role in the estrogen dependency of experimental mammary cancer. Cancer Res. 23:481–484; 1963.Google Scholar
  108. Strobl, J. S.; Lippman, M. E. Prolonged retention of estradiol human breast cancer cells in tissue culture. Cancer Res. 39:3319–3327; 1979.PubMedGoogle Scholar
  109. Thompson, H. J.; Meeker, L. D. Induction of mammary, gland carcinomas by the subcutaneous injection of 1-methyl-1-nitrosourea. Cancer Res. 43:1628–1629; 1983.PubMedGoogle Scholar
  110. Toft, D. O.; O'Malley, B. W. Target tissue receptors for progesterone: the influence of estrogen treatment. Endocrinology 90:1041–1045; 1972.PubMedCrossRefGoogle Scholar
  111. Trapman, J.; Klaassen, P.; Kuiper, G. G. J. M., et al. Cloning, structure and expression of cDNA encoding the human androgen receptor. Biochem. Biophys. Res. Commun. 153:241–248; 1988.PubMedCrossRefGoogle Scholar
  112. Turcot-Lemay, L.; Kelly, P. A. Characterization of estradiol, progesterone, and prolactin receptors in nitrosomethylurea-induced mammary tumors and effects of antiestrogen treatment on the development and growth of these tumors. Cancer Res. 40:3232–3240; 1980.PubMedGoogle Scholar
  113. Veldscholte, J.; Ris-Stalpers, C.; Kuiper, G. G. J. M., et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173:534–540; 1990a.PubMedCrossRefGoogle Scholar
  114. Veldscholte, J.; Voorhorst-Ognik, M. M.; Dolt-de-Vries, J., et al. Unusual specficity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim. Biophys. Acta 1052:187–194; 1990b.PubMedCrossRefGoogle Scholar
  115. Vignon, F.; Terqui, M.; Westley, B., et al. Effects of plasma estrogen sulfates in mammary cancer cells. Endocrinology 106:1079–1086; 1980.PubMedCrossRefGoogle Scholar
  116. Wakabayashi, K.; Nagao, M.; Esumi, H., et al. Food-derived mutagens and carcinogens. Cancer Res. 52(Suppl.):2092s-2098s; 1992.PubMedGoogle Scholar
  117. Webster, M. K.; Guthrie, J.; Firestone, G. L. Suppression of rat mammary tumor cell growth in vitro by glucocorticoids requires serum proteins. J. Biol. Chem. 265:4831–4838; 1990.PubMedGoogle Scholar
  118. Welsch, C. W. Host factors affecting the growth of carcinogen-induced rat mammary carcinogenesis: a review and tribute to Charles Brenton Huggins. Cancer Res. 45:3415–3443; 1985.PubMedGoogle Scholar
  119. Welsch, C. W.; O'Connor, D. H.; Aylsworth, C. F., et al. Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J. Natl. Cancer Inst. 78:557–565; 1987.PubMedGoogle Scholar
  120. Welsch, C. W.; Rivera, E. M. Differential effects of estrogen and prolactin on DNA synthesis in organ cultures of DMBA-induced rat mammary carcinoma. Proc. Soc. Exp. Biol. Med. 139:623–626; 1972.PubMedGoogle Scholar
  121. Wiese, T. E.; Kral, L. G.; Dennis, K. E., et al. Optimization of estrogen growth response in MCF-7 cells. In Vitro Cell. Dev. Biol. 28A:595–602; 1992.PubMedGoogle Scholar
  122. Wilson, R. H.; DeEds, F.; Cox, A. J. The toxicity and carcinogenic activity of 2-acetaminofluorene. Cancer Res. 1:595–608; 1941.Google Scholar
  123. Wittliff, J. L.; Gardner, D. G.; Battema, W. L., et al. Specific estrogen receptors in neoplastic and lactating mammary gland of the rat. Biochem. Biophys. Res. Commun. 48:119–125; 1972.PubMedCrossRefGoogle Scholar
  124. Zava, D. T.; McGuire, W. L. Androgen action through estrogen receptor in a human breast cancer cell line. Endocrinology 103:624–631; 1978.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  1. 1.The University of Texas-Houston Health Science CenterHouston

Personalised recommendations