Up-regulation of E-cadherin and β-catenin in human hepatocellular carcinoma cell lines by sodium butyrate and interferon-α

  • Tetsuya Masuda
  • Hidetsugu Saito
  • Fumihiko Kaneko
  • Kazuhiro Atsukawa
  • Minoru Morita
  • Hiroyuki Inagaki
  • Naoki Kumagai
  • Kanji Tsuchimoto
  • Hiromasa Ishii
Cell Growth/Differentiation/Apoptosis

Summary

Human E-cadherin is a homophilic cell adhesion molecule and its expression is well preserved in normal human hepatocytes; a decrease in its expression has been observed in poorly differentiated hepatocellular carcinoma cells. We examined the alteration of E-cadherin and catenin expressions caused by differentiation inducers in human hepatocellular carcinoma cells. Hepatocellular carcinoma cell lines, HCC-T and HCC-M, were cultured with all-trans retinoic acid (ATRA), dexamethasone (DEX), sodium butyrate, and interferon-α. E-cadherin expression was only up-regulated by butyrate and interferon-α (IFN-α) in both cell lines, studied by means of fluorescence immunostaining and flow cytometry. The localization of E-cadherin staining was shown at their cell membrane. According to the increase in E-cadherin expression, β-catenin expression appeared at the cell membrane of both cell lines when treated with butyrate and IFN-α. Such an appearance was not observed when cells were treated with ATRA and DEX. Western blotting showed that α-and γ-catenin expression was not changed, while only the expression of β-catenin increased. β-Catenin oncogenic activation as a result of amino acid substitutions or interstitial deletions within or including parts of exon 3, which has been demonstrated recently, was not detected in these cell lines by direct deoxyribonucleic acid sequencing. These results suggest that the expression and interaction between E-cadherin and wild-type β-catenin are potentially modulated by butyrate and IFN-α, and that these two agents are potent inhibitors of hepatocellular carcinoma cell invasion and metastasis.

Key words

hepatocellular carcinoma adhesion molecule metastasis invasion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberle, H.; Buiz, S.; Stappert, J., et al. Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107:3655–3663; 1994.PubMedGoogle Scholar
  2. Byers, S.; Pishvaian, M.; Crockett, C., et al. Retinoids increase cell-cell adhesion strength, β-catenin protein stability, and localization to the cell membrane in a breast cancer cell line: a role for serine kinase activity. Endocrinology 137:3265–3273; 1996.PubMedCrossRefGoogle Scholar
  3. Ebinuma, H.; Saito, H.; Saito, Y., et al. Antisense oligodeoxynucleotide against c-myc mRNA induces differentiation of human hepatocellular carcinoma cells. Int. J. Oncol. 15:991–999; 1999.PubMedGoogle Scholar
  4. Funayama N.; Fagotto, F.; McCrea, P.; Gumbiner, B. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J. Cell Biol. 128:959–968; 1995.PubMedCrossRefGoogle Scholar
  5. Hinck, L.; Näthke, I. S.; Papkoff, J.; Nelson, W. J. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J. Cell Biol. 125:1327–1340; 1994.PubMedCrossRefGoogle Scholar
  6. Hirano, S.; Kimoto, N.; Shimoyama, Y., et al. Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization. Cell 70:293–301; 1992.PubMedCrossRefGoogle Scholar
  7. Ihara, A.; Koizumi, H.; Hashizume, R.; Uchikoshi, T. Expression of epithelial cadherin and alpha- and beta-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology 23:1441–1447; 1996.PubMedGoogle Scholar
  8. Ilan, Y.; Saito, H.; Thummala, N. R., et al. Adenovirus-mediated gene therapy of liver diseases. Semin Liver Dis. 19:49–59; 1999.PubMedCrossRefGoogle Scholar
  9. Jawkari, A.; Jordan, S.; Poole, S., et al. Abnormal immunoreactivity of the E-cadherin-catenin complex in gastric carcinoma: relationship with patient survival. Gastroenterology 112:46–54; 1997.CrossRefGoogle Scholar
  10. Jou, T. S.; Stewart, D. B.; Stappert, J., et al. Genetic and biochemical dissection of protein linkages in the cadherin-catenin complex. Proc. Natl. Acad. Sci. USA 92:5067–5071; 1995.PubMedCrossRefGoogle Scholar
  11. Koch, A.; Denkhaus, D.; Alberecht, S., et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res. 59:269–273; 1999.PubMedGoogle Scholar
  12. Kozyraki, R.; Scoazec, J. Y.; Flejou, J. F., et al. Expression of cadherins and alpha-catenin in primary epithelial tumors of the liver. Gastroenterology 110:1137–1149; 1996.PubMedCrossRefGoogle Scholar
  13. Leung, M.-F.; Lin, T. S.; Sartorelli, A. C. Changes in actin and actin-binding proteins during the differentiation of HL-60 leukemia cells. Cancer Res. 52:3063–3066; 1992.PubMedGoogle Scholar
  14. Mareel, M. M.; Behrens, J.; Birchmeier, W., et al. Down-regulation of E-cadherin expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude mice. Int. J. Cancer 47:922–928; 1991.PubMedCrossRefGoogle Scholar
  15. Matarrese, P.; Giandomenico, V.; Fiorucci, G., et al. Antiproliferative activity of interferon a and retinoic acid in SiHa carcinoma cells: the role of cell adhesion. Int. J. Cancer 76:531–540; 1998.PubMedCrossRefGoogle Scholar
  16. Miyoshi, Y.; Iwao, K.; Nagasawa, Y., et al. Activation of the β-catenin gene in primary hepatocellular carcinoma by somatic alterations involving exon 3. Cancer Res. 58:2524–2527; 1998.PubMedGoogle Scholar
  17. Morton, R. A.; Ewing, C. M.; Nagafuchi, A., et al. Reduction of E-cadherin levels and deletion of the α-catenin gene in human prostate cancer cells. Cancer Res. 53:3585–3590; 1993.PubMedGoogle Scholar
  18. Nagafuchi, A.; Takeichi, M. Trasmembrane control of cadherin-mediated cell adhesion: a 94-kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1:37–44; 1989.PubMedGoogle Scholar
  19. Oyama, T.; Kanai, Y.; Ochiai, A., et al. A truncated β-catenin disrupts the interaction between E-cadherin and α-catenin: a cause of loss of intercellular adhesiveness in human cancer cell lines. Cancer Res. 54: 6282–6287; 1994.PubMedGoogle Scholar
  20. Ozawa, M.; Baribault, H.; Kemler, R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 8:1711–1717; 1989.PubMedGoogle Scholar
  21. Pavalko, F. M.; Otey, C. A. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc. Soc. Exp. Biol. Med. 205:282–293; 1994.PubMedGoogle Scholar
  22. Perimon, N. The genetic basis of patterned baldness in Drosophila. Cell 76: 781–784; 1994.CrossRefGoogle Scholar
  23. Polakis, P. The oncogenic activation of beta-catenin. Curr. Opin. Genet. Dev. 9:15–21; 1999.PubMedCrossRefGoogle Scholar
  24. Saito, H.; Ebinuma, H.; Takahashi, M., et al. Loss of butyrate-induced apoptosis in human hepatocellular carcinoma cell lines HCC-M and HCC-T having substantial Bcl-2 expression. Hepatology 27:1233–1240; 1998.PubMedCrossRefGoogle Scholar
  25. Saito, H.; Kagawa, T.; Tada, S., et al. Effect of dexamethasone, dimethyl-sulfoxide and sodium butyrate on a human hepatocellular carcinoma cell line PLC/PRF/5. Cancer Biochem. Biophys. 13:75–84; 1992.PubMedGoogle Scholar
  26. Saito, H.; Morizane, T.; Watanabe, T., et al. Establishment of a human cell line (HCC-T) from a patient with hepatocellular carcinoma bearing no evidence of hepatitis B or A virus infection. Cancer 64:1054–1060; 1989.PubMedCrossRefGoogle Scholar
  27. Saito, H.; Morizane, T.; Watanabe, T., et al. Differentiating effect of sodium butyrate on human hepatocellular carcinoma cell lines PLC/PRF/5, HCC-M and HCC-T. Int. J. Cancer 48:291–296; 1991.PubMedCrossRefGoogle Scholar
  28. Saito, H.; Tada, S.; Ebinuma, H., et al. Changes of antigen expression on human hepatocellular carcinoma cell lines caused by sodium butyrate, a differentiation inducer. J. Gastroenterol. 29:733–739; 1994.PubMedCrossRefGoogle Scholar
  29. Saunders, N.; Dicker, A.; Popa, C., et al. Histone deacetylase inhibitors as potential anti-skin cancer agents. Cancer Res. 59:399–404; 1999.PubMedGoogle Scholar
  30. Schipper, J. H.; Unger, A.; Jahnke, K. E-cadherin as a functional marker of the differentiation and invasiveness of squamous cell carcinoma of the head and neck. Clin. Otolaryngol. 19:381–384; 1994.PubMedGoogle Scholar
  31. Shimamura, K.; Takahashi, T.; Takeichi, T. E-cadherin expression in a particular subset of sensory neurons. Dev. Biol. 152:242–254; 1992.PubMedCrossRefGoogle Scholar
  32. Shimazui, T.; Schalken, J. A.; Giroldi, L. A., et al. Prognostic values of cadherin-associated molecules (α-, β-, and γ-catenin and p120cas) in bladder tumors. Cancer Res. 56:4154–4158; 1996.PubMedGoogle Scholar
  33. Shimoyama, Y.; Hirohashi, S.; Hirano, S. et al. Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas. Cancer Res. 49: 2128–2133; 1989.PubMedGoogle Scholar
  34. Shimoyama, Y.; Hirohashi, S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett. 57:131–135; 1991.PubMedCrossRefGoogle Scholar
  35. Späth, G. F.; Weiss, M. C. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatocellular carcinoma cells. J. Cell. Biol. 140:935–946; 1998.PubMedCrossRefGoogle Scholar
  36. Tabibzadeh, S.; Kong, Q. F.; Kapur, S., et al. Tumor necrosis factor-α-mediated dyscohesion of epithelial cells associated with disordered expression of cadherin/β-catenin and assembly of actin filaments Hum. Reprod. 10:994–1004; 1995.PubMedGoogle Scholar
  37. Tada, S.; Saito, H.; Ebinuma, H., et al. Reduction of LAK-sensitivity and changes in antigen expression on hepatoma cells by sodium butyrate. Cancer Biochem. Biophys. 15:177–186; 1996.PubMedGoogle Scholar
  38. Tada, S.; Saito, H.; Tsunematsu, S., et al. Interferon regulatory factor-1 gene abnormality and loss of growth inhibitory effect of interferon-α in human hepatoma cell lines. Int. J. Oncol. 13:1207–1216; 1998.PubMedGoogle Scholar
  39. Takeichi, M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455; 1991.PubMedCrossRefGoogle Scholar
  40. Takeichi, M. Cadherin in cancer: implications for invasion and metastasis. Curr. Opin. Cell Biol. 5:806–811; 1993.PubMedCrossRefGoogle Scholar
  41. Watabe, M.; Nagafuchi, A.; Tsukita, S., et al. Induction of polarized cell-cell association and retardation of growth by activation of the E-cadherin-catenin adhesion system in a dispersed carcinoma line. J. Cell Biol. 127:247–256; 1994.PubMedCrossRefGoogle Scholar
  42. Watanabe, T.; Morizane, T.; Tsuchimoto, K., et al. Establishment of a cell line (HCC-M) from a human hepatocellular carcinoma. Int. J. Cancer 32: 141–146; 1983.PubMedCrossRefGoogle Scholar
  43. van der Wurff, A. A. M.; Arends, J.-W.; van der Linden, E. P. M., et al. L-CAM expression in lymph node and liver metastases of colorectal carcinomas. J. Pathol. 172:177–182; 1994.PubMedCrossRefGoogle Scholar
  44. Zetter, B. R. Adhesion molecules in tumor metastasis. Semin. Cancer Biol. 4:219–229; 1993.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • Tetsuya Masuda
    • 1
  • Hidetsugu Saito
    • 1
  • Fumihiko Kaneko
    • 1
  • Kazuhiro Atsukawa
    • 1
  • Minoru Morita
    • 2
  • Hiroyuki Inagaki
    • 1
    • 2
  • Naoki Kumagai
    • 3
  • Kanji Tsuchimoto
    • 3
  • Hiromasa Ishii
    • 2
  1. 1.Department of Internal MedicineSchool of Medicine Keio UniversityTokyoJapan
  2. 2.Department of Bio-Research LaboratoryKitasato Institute HospitalTokyoJapan
  3. 3.Department of Internal MedicineKitasato Institute HospitalTokyoJapan

Personalised recommendations