Advertisement

PIG3V, an immortalized human vitiligo melanocyte cell line, expresses dilated endoplasmic reticulum

  • I. Caroline Le Poole
  • Raymond E. Boissy
  • Rangaprasao Sarangarajan
  • Jing Chen
  • Judith J. Forristal
  • Pranav Sheth
  • Wiete Westerhof
  • George Babcock
  • Pranab K. Das
  • Catharine B. Saelinger
Cell and Tissue Models

Summary

Vitiligo is an enigmatic pigmentary disorder of the skin. Factors potentially involved in the progressive loss of melanocytes from the basal layer of the epidermis include genetically determined aberrancies of the vitiligo melanocyte. It follows that analysis of melanocytes cultured from vitiligo donors can contribute to a further understanding of the etiopathomechanism. A setback for vitiligo research has been the limited availability of vitiligo-derived melanocytes. To overcome this limitation, we have generated a vitiligo melanocyte cell line according to a protocol established previously for the immortalization of normal human melanocytes. Vitiligo melanocytes Ma9308P4 were transfected with HPV16 E6 and E7 genes using the retroviral construct LXSN16E6E7. Successful transformants were selected using geneticin and subsequently cloned to ensure genetic homogeneity. The resulting cell line PIG3V has undergone more than 100 cell population doublings ince its establishment as a confluent primary culture, whereas untransfected melanocytes derived from adult skin senesce after a maximum of 50 population doublings. Cells immortalized by this transfection procedure retain lineage-specific characteristics and proliferate significantly faster than parental cells. In this study, the phenotype of PIG3V resembled melanocytes rather than melanoma cells in culture. Tyrosinase was processed properly and melanosomes remained pigmented. Importantly, ultrastructural characterization of PIG3V cells revealed dilated endoplasmic reticulum profiles characteristic of vitiligo melanocytes. An explanation for this dilation may be found in the retention of proteins with molecular weight of 37.5, 47.5, and 56.5 kDa, as determined by gel electrophoresis of microsomal proteins isolated from radiolabeled cells.

Key words

immortalization melanocytes vitiligo dilated RER HPV16 pigmentation telomerase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boissy, R. E.; Liu, Y. Y.; Medrano, E. E.; Nordlund, J. J. Structural aberration of the rough endoplasmic reticulum and melanosome compartmentalization in long-term cultures from vitiligo patients. J. Investig. Dermatol. 97:395–404; 1991.PubMedCrossRefGoogle Scholar
  2. Boissy, R. E.; Zhao, Y.; Gahl, W. A. Altered protein localization in melanocytes from Hermansky-Pudlak syndrome: support for the role of the HPS gene product in intracellular trafficking. Lab. Invest. 78:1037–1048; 1998.PubMedGoogle Scholar
  3. Galardi, E.; Mehrigan, A. H.; Hashimoto, K. Ultrastructural study of vitiligo. Int. J. Dermatol. 32:269–271; 1993.Google Scholar
  4. Halaban, R.; Alfano, F. D. Selective elimination of fibroblasts from cultures of normal human melanocytes. In Vitro 20:447–450; 1984.PubMedCrossRefGoogle Scholar
  5. Halbert, C. L.; Demers, G. W.; Galloway, D. A. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of primary human epithelial cells. J. Virol. 65:473–478; 1991.PubMedGoogle Scholar
  6. Hawley-Nelson, P.; Vousden, K. H.; Hubbert, N. L., et al. HPV16 E6 and E7 proteins cooperate to immortalize human foreski keratinocytes. EMBO J. 8:3905–3910; 1989.PubMedGoogle Scholar
  7. Im, S.; Hann, S. K.; Kim, H. I., et al. Biologic characteristics of cultured human vitiligo melanocytes. Int. J. Dermatol. 33:556–562; 1994.PubMedGoogle Scholar
  8. Jimbow, K.; Chen, H.; Park, J. Molecular mechanisms for TRP-1 involvement in vitiligo/leukoderma [abstract]. Pigment Cell Res. S5:234; 1996.Google Scholar
  9. Jones, H. W. Record of the first physician to see Henrietta Lacks at the Johns Hopkins Hospital: history of the beginning of the HeLa cell line. Am. J. Obstet. Gynecol. 176:S227-S228; 1997.PubMedCrossRefGoogle Scholar
  10. Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolaity for use in electron microscopy [abstract]. J. Cell. Biol. 27:137; 1965.Google Scholar
  11. Karnovsky, M. J. Use of ferrocyanide-reduced osmium tetroxide in electron microscopy [abstract]. J. Cell. Biol. 51:146; 1971.Google Scholar
  12. Katano, M.; Saxton, R. E.; Cochran, A. J.; Irie, R. F. Establishment of an ascitic human melanoma cell line that metastasizes to lung and liver in nude mice. J. Cancer Res. Clin. Oncol. 108:197–203; 1984.PubMedCrossRefGoogle Scholar
  13. Kim, P.S.; Arvan, P. Endocrinopathies in the family of endoplasmic reticulum storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr. Rev. 19:173–202; 1998.PubMedCrossRefGoogle Scholar
  14. Kiyono, T.; Foster, S. A.; Koop, J. I., et al. Both Rb/p16INK4A inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88; 1998.PubMedCrossRefGoogle Scholar
  15. Kovasc, S. O. Vitiligo. J. Am. Acad. Dermatol. 38:647–666; 1998.CrossRefGoogle Scholar
  16. Le Poole, I. C.; Boissy, R. E. Vitiligo. Semin. Cutan. Med. Surg. 16:3–14; 1997.PubMedCrossRefGoogle Scholar
  17. Le Poole, I. C.; van den Berg, F. M.; van den Wijngaard, R. M. J. G. J., et al. Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes. In Vitro 33:42–49; 1997.Google Scholar
  18. Le Poole, I. C.; van den Wijngaard, R. M. J. G. J.; Westerhof, W., et al. Presence or absence of melanocytes from vitiligo lesions: an immunohistochemical investigation. J. Investig. Dermatol. 100:816–822; 1993.PubMedCrossRefGoogle Scholar
  19. Majumder, P.; Nordlund, J. J.; Nath, S. K. Pattern of familial aggregation of vitiligo. Arch. Dermatol. 129:994–998; 1993.PubMedCrossRefGoogle Scholar
  20. Marquardt, T.; Helenius, A. Mistolding and aggregation of newly synthesized proteins in the endoplasmic reticulum. 117:505–513; 1992.Google Scholar
  21. McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.PubMedCrossRefGoogle Scholar
  22. Melbije, M.; Frisch, M. The role of pappilomaviruses in anogenital cancers. Semin. Cancer Biol. 8:307–313; 1998.CrossRefGoogle Scholar
  23. Moellmann, G.; Klein-Angerer, S.; Scollay, D. A., et al. Extracellular granular material and degeneration of keratinocytes in the normally pigmented epidermis of patients with vitiligo. J. Investig. Dermatol. 79:321–330; 1982.PubMedCrossRefGoogle Scholar
  24. Munger, K.; Scheffner, M.; Huibregtse, J. M.; Howley, P. M. Interactions of HPV16 E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv. 12:197–217; 1992.PubMedGoogle Scholar
  25. Nath, S. K.; Majumder, P. P.; Nordlund, J. J. Genetic epidemiology of vitiligo: multilocus recessivity cross-validated. Am. J. Hum. Genet. 55:981–990; 1994.PubMedGoogle Scholar
  26. Nicchitta, C. V.: Migliaccio, C.; Blobel, G. Biochemical assembly of the membrane components that mediate chain targeting and translocation. Cell 65:587–598; 1991.PubMedCrossRefGoogle Scholar
  27. Nordlund, J. J. The epidemiology and genetics of vitiligo. Clin. Dermatol. 15:875–878; 1997.PubMedCrossRefGoogle Scholar
  28. Puri, N.; Mojamdar, M.; Ramaiah, A. In vitro growth characteristics of melanocytes obtained from adult normal and vitiligo subjects. J. Investig. Dermatol. 88:434–438; 1987.PubMedCrossRefGoogle Scholar
  29. Ramaiah, A.; Mojamdar, M.; Amarnath, V. M. Vitiligo in the SSK community of Bangalore. Indian J. Dermatol. Venereol. Leprol. 54:251–254; 1988.Google Scholar
  30. Tomita, Y.; Yamamoto, H.; Sato, C., et al. Efficient culturing of human melanocytes from suction blishters. Tokohu J. Exp. Med. 147:219–320; 1985.CrossRefGoogle Scholar
  31. Xu, A.; Bellamy, A. R.; Taylor, J. A. BiP (GRP78) and endoplasmin (GRP94) are induced following rotavirus infection and bind transiently to an endoplasmic reticulum-localized virion compartment. J. Virol. 72:9865–9872; 1998.PubMedGoogle Scholar
  32. Zhang, J. X.; Braakman, I.; Matlack, K. E.; Helenius, A. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8:1943–1954; 1997.PubMedGoogle Scholar
  33. Zhao, H.; Boissy, Y. L.; Abdel-Malek, Z.; King, R. A.; Nordlund, J. J.; Boissy, R. E. On the analysis of the pathophysiology of Chediak-Higashi syndrome. Defects expressed by cultured melanocytes. Lab. Invest. 71:25–34; 1994.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • I. Caroline Le Poole
    • 1
  • Raymond E. Boissy
    • 2
  • Rangaprasao Sarangarajan
    • 2
  • Jing Chen
    • 5
  • Judith J. Forristal
    • 3
  • Pranav Sheth
    • 2
  • Wiete Westerhof
    • 6
  • George Babcock
    • 4
    • 7
  • Pranab K. Das
    • 1
  • Catharine B. Saelinger
    • 3
  1. 1.Department of Dermatology and PathologyAmsterdam UniversityThe Netherlands
  2. 2.Department of DermatologyUniversity of Cincinnati
  3. 3.Department of Molecular GeneticsUniversity of Cincinnati
  4. 4.Department of SurgeryUniversity of Cincinnati
  5. 5.Departments of Microbiology and ImmunologyLoyola University ChicagoIllinois
  6. 6.Institute for Pigmentary DisordersAmsterdamThe Netherlands
  7. 7.Shriners Burns InstituteCincinnati

Personalised recommendations