Effect of electrical stimulation on β-adrenergic receptor population and cyclic AMP production in chicken and rat skeletal muscle cell cultures

  • Ronald B. Young
  • Kristin Y. Bridge
  • Catherine J. Strietzel
Cellular Models


Expression of the β-adrenergic receptor (βAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the βAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the βAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the βAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

Key words

myogenesis cyclic AMP adenylate cyclase receptor desensitization 


  1. Bahouth, S. W. Thyroid hormones transcriptionally regulate the α1-adrenergic receptor gene in cultured ventricular myocytes. J. Biol. Chem. 266: 15863–15869; 1991.PubMedGoogle Scholar
  2. Brevet, A.; Pinto E; Peacock, J.; Stockdale, F. E. Myosin synthesis is increased by electrical stimulation of skeletal muscle cell cultures. Science (Wash DC) 193: 1152–1154; 1976.CrossRefGoogle Scholar
  3. Bridge, K. Y.; Smith, C. K., II; Young, R. B. Beta-adrenergic receptor gene expression in bovine skeletal muscle cells in culture. J. Anim. Sci. 26: 2382–2391; 1998.Google Scholar
  4. Buckenmeyer, P. J.; Goldfarb, A. H.; Partilla, J. S.; Pineyro, M. A.; Dax, E. M. Endurance training, not acute exercise, differentially alters β-receptors and cyclase in skeletal fiber types. Am. J. Physiol. 258: E71-E77; 1990.PubMedGoogle Scholar
  5. Cerny, L. C.; Bandman, E. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J. Cell. Biol. 103: 2153–2161; 1986.PubMedCrossRefGoogle Scholar
  6. Chen, X.; Harden, T. K.; Nicholas, R. A. Molecular cloning and characterization of a novel β-adrenergic receptor. J. Biol. Chem. 269: 24810–24819; 1994.PubMedGoogle Scholar
  7. Disatnik, M. H.; Sampson, S. R.; Shainberg, A. Characterization of betaadrenoceptors on rat skeletal muscle cells grown in vitro. Biochem. Pharmacol. 5: 1043–1048; 1990.CrossRefGoogle Scholar
  8. Dusterhoft, S.; Pette, D. Effects of electrically induced contractile activity on cultured embryonic chick breast muscle cells. Differentiation 44: 178–184; 1990.PubMedCrossRefGoogle Scholar
  9. Fell, R. D.; Lizzo, F. H.; Cervoni, P.; Crandall, D. L. Effect of contractile activity on rat skeletal muscle β-adrenoceptor properties. Proc. Soc. Exp. Biol. Med. 180: 527–532; 1985.PubMedGoogle Scholar
  10. Feve, B.; Emorine, L. J.; Briend-Sutren, M.-M.; Lasnier, F.; Strosberg, A. D.; Pairault, J. Differential regulation of α1 and α1-adrenergic receptor protein and mRNA levels by glucocorticoids during 3T3-F442A adipose differentiation. J. Biol. Chem. 265: 16343–16349; 1990.PubMedGoogle Scholar
  11. Gonzalez, G. A.; Montminy, M. R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine-133. Cell 59: 675–680; 1989.PubMedCrossRefGoogle Scholar
  12. James, S. R.; Vaziri, C.; Walker, T. R.; Milligan, G.; Downes, C. P. The turkey erythrocyte β-adrenergic receptor couples to both adenylate cyclase and phospholipase C via distinct G-protein α subunits. Biochem. J. 304: 359–364; 1994.PubMedGoogle Scholar
  13. January, B.; Seibold, A.; Whaley, B.; Hipkin, R. W.; Lin, D.; Schonbrunn, A.; Barber, R.; Clark, R. B. α2-Adrenergic receptor desensitization, agonists. J. Biol. Chem. 272: 23871–23879; 1997.PubMedCrossRefGoogle Scholar
  14. Kirschbaum, B. J.; Heilig, A.; Hartner, K.-T.; Pette, D. Electrostimulationinduced fast-to-slow transitions of myosin light and heavy chains in rabbit fast-twitch muscle at the mRNA level. FEBS Lett. 243: 123–126; 1989.PubMedCrossRefGoogle Scholar
  15. Kraus, W. E.; Bernard, T. S.; Williams, R. S. Interactions between sustained contractile activity and beta-adrenergic receptors in regulation of gene expression in skeletal muscles. Am. J. Physiol. 256: C506–514; 1989.PubMedGoogle Scholar
  16. Martin, W. H.; Murphree, S. S.; Saffity, J. E. β-adrenergic receptor distribution among muscle fiber types and resistance arterioles of white, red and intermediate skeletal muscle. Circ. Res. 64: 1096–1105; 1989a.PubMedGoogle Scholar
  17. Martin, W. H.; Coggan, A. R.; Spina, R. J.; Saffitz, J. E. Effects of fiber type and training on β-adrenoceptor density in human skeletal muscle. Am. J. Physiol. 257: E736–742; 1989b.PubMedGoogle Scholar
  18. Mersmann, H. J. Overview of the effects of β-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 76: 160–172; 1998.PubMedGoogle Scholar
  19. Moss, P.; Micou-Eastwood, J.; Strohman, R. Altered synthesis of myosin light chains is associated with contractility in cultures of differentiating chick embryo breast muscle. Dev. Biol. 114: 311–314; 1986.PubMedCrossRefGoogle Scholar
  20. Naumann, K.; Pette, D. Effects of chronic stimulation with different impulse patterns on the expression of myosin isoforms in rat myotube cultures. Differentiation 55: 203–211; 1994.PubMedCrossRefGoogle Scholar
  21. Orcutt, M. W.; Young, R. B.. Cell differentiation, protein synthesis rate and protein accumulation in muscle cell cultures isolated from embryos of layer and broiler chickens. J. Anim. Sci. 54: 769–776; 1982.PubMedGoogle Scholar
  22. Parker, E. M.; Swigart, P.; Nunnally, M. H.; Perkins, J. P.; Ross, E. M.. Carboxyl-terminal domains in the avian β-adrenergic receptor that regulate agonist-promoted endocytosis. J. Biol. Chem. 270: 6482–6487; 1995.PubMedCrossRefGoogle Scholar
  23. Pette, D. Dynamics of stimulation-induced fast-to-slow transitions in protein isoforms of the thick and thin filament. In: The dynamic state of muscle fibers. Berlin: W. de Gruyter & Co.; 1990: 415–428.Google Scholar
  24. Pette, D.; Dustergoft, S.. Altered gene expression in fast twitch muscle induced by chronic low-frequency stimulation. Am. J. Physiol. 262: R333-R338; 1992.PubMedGoogle Scholar
  25. Plourde, G.; Rousseau-Migneron, S.; Nadeau, A.. Effect of endurance training on β-adrenergic system in three different skeletal muscles J. Appl. Physiol. 74: 1641–1646; 1993.PubMedGoogle Scholar
  26. Srihari, T.; Pette, D. Myosin light chains in normal and electrostimulated cultures of embryonic chicken breast muscle. FEBS Lett. 123: 312–314; 1981.PubMedCrossRefGoogle Scholar
  27. Strosberg, A. D., Biotechnology of beta-adrenergic receptors. Mol. Neurobiol. 4: 211–250; 1990.PubMedGoogle Scholar
  28. Wang, J.; Ross, E. M.. The carboxyl-terminal anchorage domain of the turkey α1-adrenergic receptor is encoded by an alternatively spliced exon. J Biol. Chem. 270: 6488–6495; 1995.PubMedCrossRefGoogle Scholar
  29. Wehrle, U.; Dusterhoft, S.; Pette, D.. Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation 58: 37–46; 1994.PubMedCrossRefGoogle Scholar
  30. Williams, R. S.; Caron, M. G.; Daniel, K. Skeletal muscle β-adrenergic receptors: variations due to fiber type and training. Am. J. Physiol. 246; E160–167; 1984PubMedGoogle Scholar
  31. Yarden, Y.; Rodriguez, H.; Wong, S. K.-F.; Brandt, D. R.; May, D. C.; Burnier, J.; Harkings, R. N.; Chen, E. Y.; Ramachandran, J.; Ullrich, A.; Ross, E. M.. The avian β-adrenergic receptor: primary structure and membrane topology. Proc. Natl. Acad. Sci. USA 83: 6795–6799; 1986.PubMedCrossRefGoogle Scholar
  32. Young, R. B.; Miller, T. R.; Merkel, R. A.. Myofibrillar protein synthesis and assembly in satellite cell cultures isolated from skeletal muscle of mice. J. Anim. Sci. 48: 54–62; 1979.PubMedGoogle Scholar
  33. Young, R. B.; Dombroske, O. C.. Metabolism of myosin heavy chain in steadystate embryonic chick skeletal muscle cultures. Biochem. J. 194: 241–247; 1981.PubMedGoogle Scholar
  34. Young, R. B.; Schneible, P. A.. Myosin heavy chain concentration, synthesis rate and degradation rate in normal and dystrophic chicken muscle cells in culture. Eur. J. Cell Biol. 34: 75–79; 1984.PubMedGoogle Scholar
  35. Young, R. B.; Moriarity, D. M.; McGee, C. E.; Farrar, W. R.; Richter, H. E. Protein metabolism in chicken muscle cell cultures treated with cimaterol. J. Anim. Sci. 68: 1158–1169; 1990.PubMedGoogle Scholar
  36. Young, R. B.; Bridge, K. Y.; Vaughn, J. R.. Variability in β-adrenergic receptor population in cultured chicken muscle cells. In Vitro Cell. Dev. Biol. 35: 115–117; 1999.CrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • Ronald B. Young
    • 1
  • Kristin Y. Bridge
    • 1
  • Catherine J. Strietzel
    • 2
  1. 1.Marshall Space Flight CenterHuntsville
  2. 2.Department of Biological SciencesUniversity of AlabamaHuntsville

Personalised recommendations