Deveoopment of myofibroblasts from human bone marrow mesenchymal stem cells cocultured with human colon carcinoma cells and TGF beta 1

  • Makito Emura
  • Atsushi Ochiaai
  • Megumi Horino
  • Willi Arndt
  • Kenji Kamino
  • Setsuo Hirohashi
Letter to the Editor Scientific Reports

Keywords

Mesenchymal Stem Cell Myoepithelial Cell Bone Marrow Mesenchymal Stem Cell Bone Marrow MSCs Human Colon Carcinoma Cell Line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhiavegato, A.; Bochaton-Piallat, M.-L.; D'Amore, E., et al. Expression of myosin heavy chain isoforms in mammary epithelial cells and in myofibroblasts from different fibrotic settings during neoplasia. Virchows Arch. 426:77–86; 1995.Google Scholar
  2. Clark, B. R.; Keating, A.. Biology of bone marrow stroma. Ann. N.Y. Acad. Sci. 770:70–78; 1995.PubMedCrossRefGoogle Scholar
  3. Eglitis, M. A.; Mezey, E.. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Natl. Acad. Sci. USA 94:4080–4085; 1997.PubMedCrossRefGoogle Scholar
  4. Emura, M.; Ochiai, A.; Singh, G., et al. In vitro reconstitution of human respiratory epithelium. In Vitro Cell. Dev. Biol.—Animal 33:602–605; 1997.Google Scholar
  5. Ferrari, G.; Cusella-De Angelis, G.; Coletta, M., et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530; 1998.PubMedCrossRefGoogle Scholar
  6. Fleming, J. E., Jr.; Haynesworth, S. E.; Cassiede, P., et al. Monoclonal antibody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Dev. Dyn. 212:119–132; 1998.PubMedCrossRefGoogle Scholar
  7. Gleave, M.; Hsieh, J.-T.; Gao, C., et al. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51:3753–3761; 1991.PubMedGoogle Scholar
  8. Jaiswal, N.; Haynewworth, S. E.; Caplan, A. I., et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312; 1997.PubMedCrossRefGoogle Scholar
  9. Lennon, D. P.; Haynesworth, S. E.; Young, R. G., et al. A chemically defined medium supports in vitro, proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp. Cell Res. 219:211–222; 1995.PubMedCrossRefGoogle Scholar
  10. Majumdar, M. K.; Thiede, M. A.; Mosca, J. D., et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J. Cell. Physiol. 176;57–66 1998.PubMedCrossRefGoogle Scholar
  11. Martin, M.; Pujuguet, P.; Martin, F.. Role of stromal myofibroblasts infiltrating colon cancer in tumor invastion. Pathol. Res. Pract. 192:712–717; 1996.PubMedGoogle Scholar
  12. Masur, S. K.; Dewal H. S.; Dinh, T. T., et al. Myofibroblasts differentiate from fibroblasts when plated at low density. Proc. Natl. Acad. Sci. USA 93:4219–4223; 1996.PubMedCrossRefGoogle Scholar
  13. Meister, P. Myofibroblasten Übersicht und Ausblick. Pathologe 19:187–193; 1998.PubMedCrossRefGoogle Scholar
  14. Ojeda-Uribe, M.; Brunot, A.; Lenat, A., et al. Failure to detect spindle-shaped fibroblastoid cell progenitors in PBPC collections. Acta Haematol. 90: 139–143; 1993.PubMedCrossRefGoogle Scholar
  15. Pereira, R. F.; Halford, K.W.; O'Hara, M. D., et al. Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc. Natl. Acad. Sci. USA 92: 4857–4861; 1995.PubMedCrossRefGoogle Scholar
  16. Pereira, R. F.; O'Hara, M. D.; Laptev, A. V., et al. Marrow stromal cells as a source of progenitoir cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperface. Proc. Natl. Acad. Sci. USA 95:1142–1147; 1998.PubMedCrossRefGoogle Scholar
  17. Petersen, B. E.; Bowen, W. C.; Patrene, K. D., et al. Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170; 1999.PubMedCrossRefGoogle Scholar
  18. Prockop, D. J.. Marrow stromal cells as stem cells for nonhemotopoietic tissues. Science 276:71–74; 1997.PubMedCrossRefGoogle Scholar
  19. Rønnov-Jessen, L.; Petersen, O. W.; Koteliansky, V. E., et al. The origin of the myofibroblasts in breast cancer: recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Invest. 95:859–873; 1995.PubMedCrossRefGoogle Scholar
  20. Schürch, W.; Seemayer, T. A.; Gabbiani, G.. The myofibroblast: a, quartercentury after its discovery. Am. J. Surg. Pathol. 22:141–147; 1998.PubMedCrossRefGoogle Scholar
  21. Serini, G. Bochaton-Piallat, M.-L.; Ropraz, P., et al. The fibronectin, domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142: 873–881; 1998.PubMedCrossRefGoogle Scholar
  22. Sieuwerts, A. M.; Klijn, J. G. M.; Hernzen-Logmans, S. C., et al. Urokinase-type-plasminogen-activator(UPA) production by human breast (myo)fibroblasts in vitro: influence of transforming growth factor-β1(TGFβ1) compared with factor(s) released by human epithelial-carcinoma cells. Int. J. Cancer 76:829–835; 1998.PubMedCrossRefGoogle Scholar
  23. Valentich, J. D.; Popov, V.; Saada, J. I., et al. Phenotypic characterization of an intestinal subepithelial myofibroblast cell line. Am. J. Physiol. 272: C1513-C1524; 1997.PubMedGoogle Scholar
  24. Van Nhieu, J. T.; Brochériou, I.; Préaux, A.-M., et al. Myofibroblasts and hepatocellular carcinoma: an in vivo and in vitro study. J. Hepatol. 29:120–128; 1998.PubMedCrossRefGoogle Scholar
  25. Wilkins, B. S.; Jones, D. B.. Immunohistochemical characterization of intact stromal layers in long-term cultures of human bone marrow. Br. J. Haematol. 90:757–706; 1995.PubMedGoogle Scholar

Copyright information

© Society for In Vitro Biology 2000

Authors and Affiliations

  • Makito Emura
    • 1
  • Atsushi Ochiaai
    • 1
  • Megumi Horino
    • 1
  • Willi Arndt
    • 2
  • Kenji Kamino
    • 2
  • Setsuo Hirohashi
    • 3
  1. 1.Pathology DivisionNational Cancer Center Research Institute EastChibaJapan
  2. 2.Institute of Experimental PathologyMedical School HannoverHannoverGermany
  3. 3.Pathology DivisionNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations