Skip to main content
Log in

Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth

  • Articles
  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Silicone is a biomaterial that is widely used in many areas because of its high optical clarity, its durability, and the ease with which it can be cast. However, these advantages are counterbalanced by strong hydrophobicity. Gelatin cross-linking has been used as a hydrophilic coating on many biomaterials but not on silicone rubber. In this study two gelatin glutaraldehyde (GA) cross-linking methods were used to coat a hydrophilic membrane on silicone rubber. In method I, gelatin and GA were mixed in three different proportions (64:1, 128:1, and 256:1) before coating. In method II, a newly formed 5% gelatin membrane was cross-linked with a 2.5% GA solution. All coatings were hydrophilic, as determined from the measurement of contact angle for a drop of water on the surface. Bovine coronary arterial endothelial cells were shown to grow well on the surface modified by method II at 72 h. In method I, the cells grew well for gelatin-GA proportions of 64:1 and 128:1 at 72 h. No cell attachment on untreated silicone rubber was observed by the third d of seeding. The results indicated that both methods of gelatin-GA cross-linking provided a hydrophilic surface on silicone for endothelial cell adhesion and growth in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acton, C.; Hoffman, G.; McKenna, H.; Moloney, F. Silicone-induced foreign-body reaction after temporomandibular joint arthroplasty. Case report. Aust. Dent. J. 34:228–232; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Adams, W. P. J.; Robinson, J. B. J.; Rohrich, R. J. Lipid infiltration as a possible biologic cause of silicone gel breast implant aging. Plast. Reconstr. Surg. 101:64–68; 1998.

    Article  PubMed  Google Scholar 

  • Boateng, S.; Lateef, S. S.; Crot, C.; Motlagh, D.; Desai, T.; Samarel, A. M.; Russell, B.; Hanley, L. Peptides bound to silicone membranes and 3D microfabrication for cardiac cell culture. Adv. Mater. 14:461–463; 2002.

    Article  CAS  Google Scholar 

  • Bontempo, A. R.; Rapp, J. Protein-lipid interaction on the surface of a hydrophilic contact lens in vitro. Curr. Eye Res. 16:776–781; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Carmen, R.; Mutha, S. C. Lipid absorption by silicone rubber heart valve poppets—in-vivo and in-vitro results. J. Biomed. Mater. Res. 6:327–346; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Chun, J. S.; Ha, M. J.; Jacobson, B. S. Differential translocation of protein kinase C epsilon during HeLa cell adhesion to a gelatin substratum. J. Biol. Chem. 271:13008–13012; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Crawford, J. R.; Jacobson, B. S. Extracellular calcium regulates HeLa cell morphology during adhesion to gelatin: role of translocation and phosphorylation of cytosolic phospholipase A2. Mol. Biol. Cell 9:3429–3443; 1998.

    PubMed  CAS  Google Scholar 

  • Dardik, A.; Liu, A.; Ballermann, B. J. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness. J. Vasc. Surg. 29:157–167; 1999.

    Article  PubMed  CAS  Google Scholar 

  • DeFife, K. M.; Shive, M. S.; Hagen, K. M.; Clapper, D. L.; Anderson, J. M. Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber. J. Biomed. Mater. Res. 44:298–307; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Digenis, G. A.; Gold, T. B.; Shah, V. P. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J. Pharm. Sci. 83:915–921; 1994.

    Article  PubMed  CAS  Google Scholar 

  • DiTizio, V.; Karlgard, C.; Lilge, L.; Khoury, A. E.; Mittelman, M. W.; DiCosmo, F. Localized drug delivery using crosslinked gelatin gels containing liposomes: factors influencing liposome stability and drug release. J. Biomed. Mater. Res. 51:96–106; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Draye, J. P.; Delaey, B.; Van de Voorde, A.; Van Den Bulcke, A.; De Reu, B.; Schacht, E. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19:1677–1687; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Haid, M.; Lipschultz, S. A.; Caughron, A. Silicone elastomer catheter for chronic vascular access. J. Surg. Oncol. 37:136–139; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hartman, L. C.; Bessette, R. W.; Baier, R. E.; Meyer, A. E.; Wirth, J. Silicone rubber temporomandibular joint (TMJ) meniscal replacements: post-implant histopathologic and material evaluation. J. Biomed. Mater. Res. 22:475–484; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Hsiue, G. H.; Lee, S. D.; Chang, P. C. Surface modification of silicone rubber membrane by plasma induced graft copolymerization as artificial cornea. Artif. Organs 20:1196–1207 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hsiue, G. H.; Lee, S. D.; Chang, P. C.; Kao, C. Y. Surface characterization and biological properties study of silicone rubber membrane grafted with phospholipid as biomaterial via plasma induced graft copolymerization. J. Biomed. Mater. Res. 42:134–147; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hsiue, G. H.; Lee, S. D.; Wang, C. C.; Chang, P. C. The effect of plasma-induced graft copolymerization of PHEMA on silicone rubber towards improving corneal epithelial cells growth. J. Biomater. Sci. Polym. Ed. 5:205–220; 1993.

    PubMed  CAS  Google Scholar 

  • Hsiue, G. H.; Lee, S. D.; Wang, C. C.; Shiue, M. H.; Chang, P. C.. Plasma-induced graft copolymerization of HEMA onto silicone rubber and TPX film improving rabbit corneal epithelial cell attachment and growth. Biomaterials 15:163–171; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. D.; Hsiue, G. H.; Kao, C. Y.; Chang, P. C. Artificial cornea: surface modification of silicone rubber membrane by graft polymerization of pHEMA via glow discharge. Biomaterials 17:587–595; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F. H.; Yao, C. H.; Sun, J. S.; Liu, H. C.; Huang, C. W. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials 19:905–917; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Lumsden, A. B.; Chen, C.; Coyle, K. A.; Ofenloch, J. C.; Wang, J. H.; Yasuda, H. K.; Hanson, S. R. Nonporous silicone polymer coating of expanded polytetrafluoroethylene grafts reduces graft neointimal hyperplasia in dog and baboon models. J. Vasc. Surg. 24:825–833; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Maissa, C.; Franklin, V.; Guillon, M.; Tighe, B. Influence of contact lens material surface characteristics and replacement frequency on protein and lipid deposition. Optom. Vis. Sci. 75:697–705; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Marois, Y.; Chakfe, N.; Deng, X.; Marois, M.; How, T.; King, M. W.; Guidoin, R. Carbodiimide cross-linked gelatin: a new coating for porous polyester arterial prostheses. Biomaterials 16:1131–1139; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, S.; Iwata, H.; Se, N.; Ikada, Y. Bioadhesion of gelatin films cross-linked with glutaraldehyde. J. Biomed. Mater. Res. 45:20–27; 1999.

    Article  PubMed  CAS  Google Scholar 

  • McDevitt, J. J. T.; Murphy, J. J. Renal artery catheterization using silicone tubing. Surg. Gynecol. Obstet. 135:99–100; 1972.

    PubMed  Google Scholar 

  • Migonney, V.; Lacroix, M. D.; Ratner, B. D.; Jozefowicz, M. Silicone derivatives for contact lenses: silicone derivatives for contact lenses: functionalization, chemical characterization, and cell compatibility assessment. J Biomater. Sci. Polym. Ed. 7:265–275; 1995.

    PubMed  CAS  Google Scholar 

  • Moss, A. H.; Vasilakis, C.; Holley, J. L.; Foulks, C. J.; Pillai, K.; McDowell, D. E. Use of a silicone dual-lumen catheter with a Dacron cuff as a long-term vascular access for hemodialysis patients. Am. J. Kidney Dis. 16:211–215; 1990.

    PubMed  CAS  Google Scholar 

  • Okada, T.; Ikada, Y. Surface modification of silicone for percutaneous implantation. J. Biomater. Sci. Polym. Ed. 7:171–180; 1995.

    PubMed  CAS  Google Scholar 

  • Ott, M. J.; Ballermann, B. J. Shear stress-conditioned, endothelial cell-seeded vascular grafts: improved cell adherence in response to in vitro shear stress. Surgery 117:334–339; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. H.; Park, K. D.; Bae, Y. H. PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Biomaterials 20:943–953; 1999.

    Article  PubMed  Google Scholar 

  • Silver, J. H.; Lin, J. C.; Lim, F.; Tegoulia, V. A.; Chaudhury, M. K.; Cooper, S. L. Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20:1533–1543; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, C. H. Development of a successful silicone rubber arterial graft. Ann. Thorac. Surg. 2:585–593; 1966.

    Article  PubMed  CAS  Google Scholar 

  • Stimpson, C.; White, R.; Klein, S.; Shors, E. Patency and durability of small diameter silicone rubber vascular prostheses. Biomater. Artif. Cells Artif. Org. 17:31–43; 1989.

    CAS  Google Scholar 

  • Volcker, N.; Klee, D.; Hocher, H.; Langefeld, S. Functionalization of silicone rubber for the covalent immobilization of fribronectin. J. Mater. Sci. Mater. Med. 12:111–119; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, D. L.; Aiache, A. E.; Silver, L. A new soft, round, silicone gel breast implant. Plast. Reconstr. Surg. 53:174–178; 1974.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. Mills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, H., Mills, D.K., Jonathan, A.S. et al. Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth. In Vitro Cell.Dev.Biol.-Animal 38, 487–492 (2002). https://doi.org/10.1290/1071-2690(2002)038<0487:GCOSRT>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0487:GCOSRT>2.0.CO;2

Key words

Navigation