Skip to main content
Log in

Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We studied the sensitivity of tumor cells to the induction of apoptosis by iron deprivation. Iron deprivation was achieved by the employment of a defined iron-deficient culture medium. Mouse 38C13 cells and human Raji cells die within 48 and 96 h of incubation in iron-deficient medium, respectively. On the contrary, mouse EL4 cells and human HeLa cells are completely resistant to the induction of death under the same experimental arrangement. Deoxyribonucleic acid fragmentation analysis by agarose gel electrophoresis as well as flow cytometric analysis after propidium iodide staining detected in 38C13 and Raji cells, but not in EL4 and HeLa cells, changes characteristic to apoptosis. The 38C13 cells, sensitive to iron deprivation, also displayed a similar degree of sensitivity to apoptosis induction by thiol deprivation (achieved by 2-mercaptoethanol withdrawal from the culture medium) as well as by rotenone (50 nM), hydroxyurea (50 μM), methotrexate (20 nM), and doxorubicin (100 nM). Raji cells shared with 38C13 cells a sensitivity to rotenone, methotrexate, doxorubicin, and, to a certain degree, to hydroxyurea. However, Raji cells were completely resistant to thiol deprivation. EL4 and HeLa cells, resistant to iron deprivation, also displayed a greater degree of resistance to most of the other apoptotic stimuli than did their sensitive counterparts. We conclude that some tumor cells in vitro are sensitive to apoptosis induction by iron deprivation, while other tumor cells are resistant. All the tumors found to be sensitive to iron deprivation in this study (four cell lines) are of hematopoietic origin. The mechanism of resistance to apoptosis induction by iron deprivation differs from the mechanism of resistance to thiol deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooks, D.; Taylor, C.; Dos Santos, B.; Linden, H.; Houghton, A.; Hecht, T.; Kornfeld, S.; Taetle, R. Phase Ia trial of murine IgA anti-transferrin receptor antibody 42/6. Clin. Cancer Res. 1:1259–1265; 1995.

    PubMed  CAS  Google Scholar 

  • Chen, T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 104:255–262; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Chitambar, C. R.; Boom, P.; Wereley, J. P. Evaluation of transferrin and gallium-pyridoxal isoicotinoyl hydrazone as potential therapeutic agents to overcome lymphoid leukemic cell resistance to gallium nitrate. Clin. Cancer Res. 2:1009–1015; 1999.

    Google Scholar 

  • Donfrancesco, A.; Deb, G.; Angioni, A., et al. D-CECaT: a breakthrough for patients with neuroblastoma. Anticancer Drugs 4:317–321; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Donfrancesco, A.; Deb, G.; De Sio, L.; Cozza, R.; Castellano, A. Role of deferoxamine in tumor therapy. Acta Haematol. 95:66–69; 1996.

    PubMed  CAS  Google Scholar 

  • Donfrancesco, A.; Deb, G.; Dominici, C.; Pileggi, D.; Castello, M. A.; Helson, L. Effects of a single course of deferoxamine in neuroblastoma patients. Cancer Res. 50:4929–4930; 1990.

    PubMed  CAS  Google Scholar 

  • Fukuchi, K.; Tomoyasu, S.; Tsuruoka, N.; Gomi, K. Iron deprivation-induced apoptosis in HL-60 cells. FEBS Lett. 350:139–142; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi, K.; Tomoyasu, S.; Watanabe, H.; Kaetsu, S.; Tsuruoka, N.; Gomi, K. Iron deprivation results in an increase in p53 expression. Biol. Chem. Hoppe-Seyler 376:627–630; 1995.

    PubMed  CAS  Google Scholar 

  • Head, J. F.; Wang, F.; Elliott, R. L. Antineoplastic drugs that interfere with iron metabolism in cancer cells. Adv. Enzyme Regul. 37:147–169; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hileti, D.; Panayiotidis, P.; Hoffbrand, A. V. Iron chelators induce apoptosis in proliferating cells. Br. J. Haematol. 89:181–187; 1995.

    PubMed  CAS  Google Scholar 

  • Hoffman, B.; Liebermann, D. A. Molecular controls of apoptosis: differentiation/growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive & negative modulators. Oncogene 9:1807–1812; 1994.

    PubMed  CAS  Google Scholar 

  • Hsieh-Ma, S. T.; Shi, T.; Reeder, J.; Ring, D. B. In vitro tumor growth inhibition by bispecific antibodies to human transferrin receptor and tumor-associated antigens is augmented by the iron chelator deferoxamine. Clin. Immunol. Immunopathol. 80:185–193; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Ido, Y.; Muto, N.; Inada, A., et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 32:63–73; 1999.

    PubMed  CAS  Google Scholar 

  • Jacobson, M. D.; Weil, M.; Raff, M. C. Programmed cell death in animal development. Cell 88:347–354; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kemp, J. D. Iron deprivation and cancer: a view beginning with studies of monoclonal antibodies against the transferrin receptor. Histol. Histopathol. 12:291–296; 1997.

    PubMed  CAS  Google Scholar 

  • Kemp, J. D.; Cardillo, T.; Stewart, B. C.; Kehrberg, E.; Weiner, G.; Hedlund, B.; Naumann, P. Inhibition of lymphoma growth in vivo by combined treatment with hydroxyethyl starch deferoxamine conjugate sand IgG monoclonal antibodies against the transferrin receptor. Cancer Res. 55:3817–3824; 1995.

    PubMed  CAS  Google Scholar 

  • Kemp, J. D.; Thorson, J. A.; Stewart, B. C.; Naumann, P. W. Inhibition of hematopoietic tumor growth by combined treatment with deferoxamine and IgG monoclonal antibody against the transferrin receptor. Evidence for a threshold model of iron deprivation toxicity. Cancer Res. 52:4144–4148; 1992.

    PubMed  CAS  Google Scholar 

  • Kontouras, J.; Boura, P.; Karolides, A.; Zaharioudaki, E.; Tsapas, G. Recombinant α2 interferon (α-IFN) with chemo-hormonal therapy in patients with hepatocellular carcinoma. Hepatogastroenterology 42:31–36; 1995.

    Google Scholar 

  • Kovář, J. Growth-stimulating effect of ferric citrate on hybridoma cells: characterization and relation to transferrin function. Hybridoma 7:255–263; 1988.

    PubMed  Google Scholar 

  • Kovář, J.; Franěk, F. Iron compounds at high concentrations enable hybridoma growth in a protein-free medium. Biotechnol. Lett. 9:259–265; 1987.

    Article  Google Scholar 

  • Kovář, J.; Franěk, F. Growth-stimulating effect of transferrin on a hybridoma cell line: relation to transferrin iron-transporting function. Exp. Cell Res. 182:358–369; 1989.

    Article  PubMed  Google Scholar 

  • Kovář, J.; Naumann, P. W.; Stewart, B. C.; Kemp, J. D. Differing sensitivity of non-hematopoietic human tumors to synergistic anti-transferrin receptor monoclonal antibodies and deferoxamine in vitro. Pathobiology 63:65–70; 1995.

    PubMed  Google Scholar 

  • Kovář, J.; Seligman, P.; Gelfand, E. W. Differential growth-inhibitory effects of gallium on B-lymphocyte lines in high versus low iron concentrations. Cancer Res. 50:5727–5730; 1990.

    PubMed  Google Scholar 

  • Kovář, J.; Stunz, L. L.; Stewart, B. C.; Kriegerbeckova, K.; Ashman, R. F.; Kemp, J. D. Direct evidence that iron deprivation induces apoptosis in murine lymphoma 38C13. Pathobiology 65:61–68; 1997.

    Article  PubMed  Google Scholar 

  • Leardi, A.; Caraglia, M.; Selleri, C., et al. Desferioxamine increases iron depletion and apoptosis induced by ara-C of human myeloid leukaemic cells. Br. J. Haematol. 102:746–752; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Porter, J. B.; Lynagh, G. R.; Hider, R. C. Iron chelators promote apoptosis in thymocytes and proliferating leukaemia cells. Br. J. Haematol. 87 (Suppl. 1):114; 1994.

    Google Scholar 

  • Raff, M. Cell suicide for beginners. Nature 396:119–122; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Riaz-Ul-Haq; Werely, J. P.; Chitambar, C. R. Induction of apoptosis by iron deprivation in human leukemic CCRF-CEM cells. Exp. Hematol. 23: 428–432; 1995.

    Google Scholar 

  • Seidman, A. D.; Scher, H. I.; Heinemann, M. H.; Bajorin, D. F.; Sternberg, C. N.; Dershaw, D. D.; Silverberg, M.; Bosl, G. J. Continuous infusion gallium nitrate for patients with advanced refractory urothelial tract tumors. Cancer 68:2561–2565; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Seligman, P. A.; Crawford, E. D. Treatment of advanced transitional cell carcinoma of the bladder with continuous-infusion gallium nitrate. J. Natl. Cancer Inst. 83:1582–1584; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Taetle, R.; Honeysett, J. M.; Bergeron, R. Combination iron depletion therapy. J. Natl. Cancer Inst. 81:1229–1235; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, R. E.; Avis, I.; Neumann, R. D.; Mulshine, J. L. Transferrin dependence of Ga(NO3)3 inhibition of growth in human-derived small cell lung cancer cells. J. Cell. Biochem. 24(Suppl.):276–287; 1996.

    Article  CAS  Google Scholar 

  • White, S.; Taetle, R.; Seligman, P. A.; Rutherford, M.; Trowbridge, I. S. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. Cancer Res. 50:6295–6301; 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kovář.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovář, J., Valenta, T. & Štýbrová, H. Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro. In Vitro Cell.Dev.Biol.-Animal 37, 450–458 (2001). https://doi.org/10.1290/1071-2690(2001)037<0450:DSOTCT>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2001)037<0450:DSOTCT>2.0.CO;2

Key words

Navigation