Milieu-based versus gene-modulatory strategies for directing stem cell differentiation—A major issue of contention in transplantation medicine

Letter to the Editor


Stem Cell Genetic Modulation Stem Cell Differentiation Nucleic Acid Delivery Direct Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, H.; Chaboissier, M. C.; Martin, J. F.; Schedl, A.; de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16(21):2813–28; 2002.PubMedCrossRefGoogle Scholar
  2. Chou, T. H.; Biswas, S.; Lu, S. Gene delivery using physical methods: An overview. Methods Mol Biol. 245:147–166; 2004.PubMedGoogle Scholar
  3. Daley, G. Q.; Goodell, M. A.; Snyder, E. Y. Realistic prospects for stem cell therapeutics. Hematology (Am Soc Hematol Educ Program). 398–418; 2003.Google Scholar
  4. Dass, C. R.; Su, T. Delivery of lipoplexes for genotherapy of solid tumors: Role of vascular endothelial cells. J. Pharm Pharmacol. 52(11):1301–1317; 2000.PubMedCrossRefGoogle Scholar
  5. Eisenberg, L. M.; Kubalak, S. W.; Eisenberg, C. A. Stem cells and the formation of the myocardium in the vertebrate embryo. Anat Rec. 276A(1):2–12; 2004.CrossRefGoogle Scholar
  6. Gerecht-Nir, S.; Itskovitz-Eldor, J. Cell therapy using human embryonic stem cells. Transpl Immunol. 12(3–4):203–209; 2004.PubMedCrossRefGoogle Scholar
  7. Gerhart, J.; Neely, C.; Stewart, B.; Perlman, J.; Beckmann, D.; Wallon, M.; Knudsen, K.; George-Weinstein, M. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage. J. Cell Biol. 164(5):739–746; 2004.PubMedCrossRefGoogle Scholar
  8. Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M., et al. LMO2-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science. 302(5644):415–419; 2003.PubMedCrossRefGoogle Scholar
  9. Hedrick, M. H.; Daniels, E. J. The use of adult stem cells in regenerative medicine. Clin Plast Surg. 30(4):499–505; 2003.PubMedCrossRefGoogle Scholar
  10. Heng, B. C.; Cao, T.; Haider, H. K.; Wang, D. Z.; Sim, E. K.; Ng, S. C. An overview and synopsis of techniques for directing stem cell differentiation in vitro. Cell Tissue Res. 315(3):291–303; 2004.PubMedCrossRefGoogle Scholar
  11. Hodgetts, S. I.; Beilharz, M. W.; Scalzo, A. A.; Grounds, M. D. Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant. 9(4):489–502; 2000.PubMedGoogle Scholar
  12. Johnson, L. F.; deSerres, S.; Herzog, S. R.; Peterson, H. D.; Meyer, A. A. Antigenic crossreactivity between media supplements for cultured keratinocyte grafts. J. Burn Care Rehabil. 12(4):306–312; 1991.PubMedCrossRefGoogle Scholar
  13. Lee, C. T.; Park, K. H.; Yanagisawa, K.; Adachi, Y.; Ohm, J. E.; Nadaf, S.; Dikov, M. M.; Curiel, D. T.; Carbone, D. P. Combination therapy with conditionally replicating adenovirus and replication defective adenovirus. Cancer Res. 64(18):6660–6665; 2004.PubMedCrossRefGoogle Scholar
  14. Lian, J. B.; Javed, A.; Zaidi, S. K.; Lengner, C.; Montecino, M.; van Wijnen, A. J.; Stein, J. L.; Stein, G. S. Regulatory controls for osteoblast growth and differentiation: Role of Runx/Cbfa/AML factors. Crit Rev Eukaryot Gene Expr. 14(1–2):1–41; 2004.PubMedCrossRefGoogle Scholar
  15. Mackenzie, T. C.; Flake, A. W. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells Mol Dis. 27(3):601–604; 2001.PubMedCrossRefGoogle Scholar
  16. Rohwedel, J.; Guan, K.; Hegert, C.; Wobus, A. M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity, and embryotoxicity studies: Present state and future prospects. Toxicol In Vitro. 15(6):741–753; 2001.PubMedCrossRefGoogle Scholar
  17. Smythe, G. M.; Grounds, M. D. Exposure to tissue culture conditions can adversely affect myoblast behavior in vivo in whole muscle grafts: Implications for myoblast transfer therapy. Cell Transplant. 9(3):379–393 2000.PubMedGoogle Scholar
  18. Spradling, A.; Drummond-Barbosa, D.; Kai, T. Stem cells find their niche. Nature 414(6859):98–104; 2001.PubMedCrossRefGoogle Scholar
  19. Trounson, A. Human embryonic stem cells: Mother of all cell and tissue types. Reprod Biomed Online. 4Suppl 1:58–63; 2002.PubMedGoogle Scholar
  20. Wang, J. S.; Shum-Tim, D.; Chedrawy, E.; Chiu, R. C. The coronary delivery of marrow stromal cells for myocardial regeneration: Pathophysiologic and therapeutic implications. J. Thorac Cardiovasc Surg. 122(4):699–705; 2001.PubMedCrossRefGoogle Scholar
  21. Weil, D.; Garcon, L.; Harper, M.; Dumenil, D.; Dautry, F.; Kress, M. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells. Biotechniques, 33(6):1244–1248; 2002.PubMedGoogle Scholar
  22. Wilson, J. A.; Richardson, C. D. Induction of RNA interference using short interfering RNA expression vectors in cell culture and animal systems. Curr Opin Mol Ther. 5(4):389–396; 2003.PubMedGoogle Scholar
  23. Yin, Y.; Lim, Y. K.; Salto-Tellez, M.; Ng, S. C.; Lin, C. S.; Lim, S. K. AFP(+), ESC-derived cells engraft and differentiate into hepatocytes in vivo. Stem Cells. 20(4):338–346; 2003.CrossRefGoogle Scholar
  24. Zandstra, P. W.; Bauwens, C.; Yin, T.; Liu, Q.; Schiller, H.; Zweigerdt, R.; Pasumarthi, K. B.; Field, L. J. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9(4):767–778; 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2006

Authors and Affiliations

  1. 1.Stem Cell Laboratory Faculty of DentistryNational University of SingaporeSingapore

Personalised recommendations