Advertisement

Effect of the modulation of the membrane lipid composition on the localization and function of P-glycoprotein in MDR1-MDCK cells

  • Sarah W. Kamau
  • Stefanie D. Krämer
  • Maja Günthert
  • Heidi Wunderli-Allenspach
Articles Cell and Tissue Models

Summary

Multidrug resistance (MDR) is a major obstacle in cancer therapy. It results from different mechanisms; among them is P-glycoprotein (P-gp)-mediated drug efflux out of cells. The mechanism of action remains elusive. The membrane lipid surrounding of P-gp, especially cholesterol, has been postulated to play an important role. To determine the effect of cholesterol depletion on P-gp, Madin Darby canine kidney (MDCK) cells, transfected with the mdr1 gene (MDR1-MDCK cells), were treated with methyl-β-cyclodextrin (MβCD). The localization and function of P-gp were analyzed using confocal laser scanning microscopy. Treatment with 100 mM MβCD did not affect viability but altered the structural appearance of the cells and abolished efflux of rhodamine 123, a P-gp substrate. The MβCD treatment released P-gp from intact cells into the supernatant and reduced the amount of P-gp in total membrane preparations. The P-gp was shifted from the raft fractions (1% Triton X-100, 4° C) to higher density fractions in MβCD-treated cells. The amount of cholesterol was significantly decreased in the raft fractions. Treatment of cells with 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, a glucosylceramide synthase inhibitor, also led to a shift of P-gp to higher density fractions. These results show that removal of cholesterol modulates the membrane lipid composition, changes the localization of P-gp, and results in loss of P-gp function.

Key words

P-glycoprotein cholesterol glycosphingolipids rafts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arima, H.; Yunomae, K.; Morikawa, T.; Hirayama, F.; Uekama, K. Contribution of cholesterol and phospholipids to inhibitory effect of dimethyl-beta-cyclodextrin on efflux function of P-glycoprotein and multidrug resistance-associated protein 2 in vinblastine-resistant Caco-2 cell monolayers. Pharm. Res. 21:625–634; 2004.PubMedCrossRefGoogle Scholar
  2. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.PubMedCrossRefGoogle Scholar
  3. Braun, A.; Hammerle, S.; Suda, K.; Rothen-Rutishauser, B.; Gunthert M.; Kramer, S. D.; Wunderli-Allenspach, H. Cell cultures as tools in biopharmacy. Eur. J. Pharm. Sci. 11(Suppl. 2):S51-S60; 2000.PubMedCrossRefGoogle Scholar
  4. Brown, D. A.; Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544; 1992.PubMedCrossRefGoogle Scholar
  5. Bucher, K.; Besse, C. A.; Kamau, S. W.; Wunderli-Allenspach, H.; Krämer, S. D. Isolated rafts from adriamycin-resistant P388 cells contain functional ATPases and provide an easy test system for p-glycoprotein-related activities. Pharm. Res. 22:449–457; 2005.PubMedCrossRefGoogle Scholar
  6. Demeule, M.; Jodoin, J.; Gingras, D.; Beliveau, R. P-glycoprotein is localized in caveolae in resistant cells and in brain capillaries. FEBS Lett. 466:219–224; 2000.PubMedCrossRefGoogle Scholar
  7. di Bartolomeo, S.; Spinedi, A. Differential chemosensitizing effect of two glucosylceramide synthase inhibitors in hepatoma cells. Biochem. Biophys. Res. Commun. 288:269–274; 2001.PubMedCrossRefGoogle Scholar
  8. Eytan, G. D.; Kuchel, P. W. Mechanism of action of P-glycoprotein in relation to passive membrane permeation. Int. Rev. Cytol. 190;175–250; 1999.PubMedCrossRefGoogle Scholar
  9. Fontaine, M.; Elmquist, W. F.; Miller, D. W. Use of rhodamine 123 to examine the functional activity of P-glycoprotein in primary culture brain microvessel endothelial cell monolayers. Life Sci. 59:1521–1531; 1996.PubMedCrossRefGoogle Scholar
  10. Foster, L. J.; De Hoog, C. L.; Mann, M. Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. Proc. Natl. Acad. Sci. USA 100;5813–5818; 2003.PubMedCrossRefGoogle Scholar
  11. Hammerle, S. P.; Rothen-Rutishauser, B.; Kramer, S. D.; Gunthert, M.; Wunderli-Allenspach, H. P-Glycoprotein in cell cultures: a combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 12:69–77; 2000.PubMedCrossRefGoogle Scholar
  12. Hooper, N. M. Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae (review). Mol. Membr. Biol. 16:145–156; 1999.PubMedCrossRefGoogle Scholar
  13. Hangumaran, S.; Hoesli, D. C. Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane, Biochem. J. 335(Pt. 2):433–440; 1998.Google Scholar
  14. Inokuchi, J. I.; Uemura, S.; Kabayama, K.; Igarashi, Y. Glycosphingolipid deficiency affects functional microdomain formation in Lewis lung carcinoma cells. Glycoconj. J. 17:239–245; 2000.PubMedCrossRefGoogle Scholar
  15. Kohler, S.; Stein, W. D. Optimizing chemotherapy by measuring reversal of P-glycoprotein activity in plasma membrane vesicles. Biotechnol. Bioeng. 81:507–517; 2003.PubMedCrossRefGoogle Scholar
  16. Kramer, S. D.; Hurley, J. A.; Abbott, N. J.; Begley, D. J. Lipids in blood-brain barrier models in vitro I: thin-layer chromatography and high-performance liquid chromatography for the analysis of lipid classes and loing-chain polyunsaturated fatty acids. In Vitro Cell. Dev. Biol. 38A:557–565; 2002.CrossRefGoogle Scholar
  17. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.PubMedCrossRefGoogle Scholar
  18. Lavie, Y.; Cao, H.; Volner, A.; Lucci, A.; Han, T. Y.; Geffen, V.; Giuliano, A. E.; Cabot, M. C. Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J. Biol. Chem. 272:1682–1687; 1997.PubMedCrossRefGoogle Scholar
  19. Lavie, Y.; Fiucci, G.; Czarny, M. Changes in membrane microdomains and caveolae constitutents in multidrug-resistant cancer cells. Lipids 34(Suppl.):S57-S63; 1999.PubMedCrossRefGoogle Scholar
  20. Lavie, Y.; Fiucci, G.; Liscovitch, M. Up-regulation of caveolae and caveolar constitutents in multidrug-resistant cancer cells. J. Biol. Chem. 273:32380–32383; 1998.PubMedCrossRefGoogle Scholar
  21. Loor, F.; Tiberghien, F.; Wenandy, T.; Didier, A.; Traber, R. Cyclosporins: structure-activity relationships for the inhibition of the human MDR1 P-glycoprotein ABC transporter. J. Med. Chem. 45:4598–4612; 2002.PubMedCrossRefGoogle Scholar
  22. Lucci, A.; Han, T. Y.; Liu, Y. Y.; Giuliano, A. E.; Cabot, M. C. Modification of ceramide metabolism increases cancer cell sensitivity to cytotoxics. Int. J. Oncol. 15:541–546; 1999.PubMedGoogle Scholar
  23. Luker, G. D.; Pica, C. M.; Kumar, A. S.; Covey, D. F.; Piwnica-Worms, D. Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains. Biochemistry 39:7651–7661; 2000.PubMedCrossRefGoogle Scholar
  24. Magee, A. I.; Parmryd, I. Detergent-resistant membranes and the protein composition of lipid rafts. Genome Biol. 4:234; 2003.PubMedCrossRefGoogle Scholar
  25. Matthews, V.; Schuster, B.; Schutze, S., et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J. Biol. Chem. 278:38829–38839; 2003.PubMedCrossRefGoogle Scholar
  26. Modok, S.; Heyward, C.; Callaghan, R. P-glycoprotein retains function when reconstituted into a sphingolipid- and cholesterol-rich environment. J. Lipid Res. 45:1910–1918; 2004.PubMedCrossRefGoogle Scholar
  27. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63; 1983.PubMedCrossRefGoogle Scholar
  28. Nagafuku, M.; Kabayama, K.; Oka, D., et al. Reduction of glycosphingolipid levels in lipid rafts affects the expression state and function of glycosylphosphatidylinositol-anchored proteins but does not impair signal transduction via the T cell receptor. J. Biol. Chem. 278:51920–51927; 2003.PubMedCrossRefGoogle Scholar
  29. Naslavsky, N.; Shmeeda, H.; Friedlander, G.; Yanai, A.; Futerman, A. H.; Barenholz, Y.; Taraboulos, A. Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J. Biol. Chem. 274:20763–20771; 1999.PubMedCrossRefGoogle Scholar
  30. Neethling, F. A.; Koscec, M.; Oriol, R.; Cooper, D. K.; Koren, E. A reliable, rapid and inexpensive two-color fluorescence assay to monitor serum cytotoxicity in xenotransplantation. J. Immunol. Methods 222:31–44; 1999.PubMedCrossRefGoogle Scholar
  31. Norris-Cervetto, E.; Callaghan, R.; Platt, F. M.; Dwek, R. A.; Butters, T. D. Inhibition of glucosylceramide synthase does not reverse drug resistance in cancer cells. J. Biol. Chem. 279:40412–40418; 2004.PubMedCrossRefGoogle Scholar
  32. Pastan, I.; Gottesman, M. M.; Ueda, K.; Lovelace, E.; Rutherford, A. V.; Willingham, M. C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85:4486–4490; 1988.PubMedCrossRefGoogle Scholar
  33. Pike, L. J. Lipid rafts: bringing order to chaos. J. Lipid Res. 44:655–667; 2003a.PubMedCrossRefGoogle Scholar
  34. Pike, J. L. Lipid rafts: heterogeneity on the high seas. Biochem. J. 378:281–292; 2003b.CrossRefGoogle Scholar
  35. Plo, I.; Lehne, G.; Beckstrom, K. J.; Maestre, N.; Bettaieb, A.; Laurent, G.; Lautier, D. Influence of ceramide metabolism on P-glycoprotein function in immature acute myeloid leukemia KG1a cells. Mol. Pharmacol. 62:304–312; 2002.PubMedCrossRefGoogle Scholar
  36. Roepe, P. D. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 166:71–73; 1998.PubMedCrossRefGoogle Scholar
  37. Rothen-Rutishauser, B.; Kramer, S. D.; Braun, A.; Gunthert, M.; Wunderli-Allenspach, H. MDCK cell cultures as an epithelial in vitro model: cytoskeleton and tight junctions as indicators for the definition of age-related stages by confocal microscopy. Pharm. Res. 15:964–971; 1998.PubMedCrossRefGoogle Scholar
  38. Rothnie, A.; Theron, D.; Soceneantu, L., et al. The importance of cholesterol in maintenance of P-glycoprotein activity and its membrane perturbing influence. Eur. Biophys. J. 30:430–442; 2001.PubMedCrossRefGoogle Scholar
  39. Scheiffele, P.; Roth, M. G.; Simons, K. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16:5501–5508; 1997.PubMedCrossRefGoogle Scholar
  40. Shand, J. H.; Noble, R. C. Quantification of lipid mass by a liquid scintillation counting procedure following charring on thin-layer plates. Anal. Biochem. 101:427–434; 1980.PubMedCrossRefGoogle Scholar
  41. Sharom, F. J. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160:161–175; 1997.PubMedCrossRefGoogle Scholar
  42. Sietsma, H.; Veldman, R. J.; Kolk, D., Ausema, B.; Nijhof, W.; Kamps, W.; Vellenga, E.; Kok, J. W. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin. Cancer Res. 6:942–948; 2000.PubMedGoogle Scholar
  43. Simons, K.; Ikonen, E. Functional rafts in cell membranes. Nature 387:569–572; 1997.PubMedCrossRefGoogle Scholar
  44. Simons, K.; van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27:6197–6202; 1988.PubMedCrossRefGoogle Scholar
  45. Tang, F.; Horie, K.; Borchardt, R. T. Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm. Res. 19:765–772; 2002.PubMedCrossRefGoogle Scholar
  46. Troost, J.; Albermann, N.; Emil Haefeli, W.; Weiss, J. Cholesterol modulates P-glycoprotein activity in human peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 316:705–711; 2004.PubMedCrossRefGoogle Scholar
  47. van de Loosdrecht, A. A.; Beelen, R. H.; Ossenkoppele, G. J.; Broekhoven, M. G.; Langenhuijsen M. M. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunol. Methods 174:311–320; 1994.PubMedCrossRefGoogle Scholar
  48. Vellonen, K. S.; Honkakoski, P.; Urtti, A. Substrates and inhibitors of efflux proteins interfere with the MTT assay in cells and may lead to underestimation of drug toxicity. Eur. J. Pharm. Sci. 23:181–188; 2004.PubMedCrossRefGoogle Scholar
  49. von Tresckow, B.; Kallen, K. J.; von Strandmann, E. P.; Borchmann, P.; Lange H.; Engert, A.; Hansen, H. P. Depletion of cellular cholesterol and lipid rafts increases shedding of CD30. J. Immunol. 172:4324–4331; 2004.Google Scholar
  50. Wagner, M. M.; Paul, D. C.; Shih, C.; Jordan, M. A.; Wilson, L.; Williams, D. C. In vitro pharmacology of cryptophycin 52 (LY355703) in human tumor cell lines. Cancer Chemother. Pharmacol. 43:115–125; 1999.PubMedCrossRefGoogle Scholar
  51. Xie, M.; Low, M. G.: Streptolysin-O induces release of glycosylphosphatidy-linositol-anchored alkaline phosphatase from ROS cells by vesiculation independently of phospholipase action. Biochem. J. 305(Pt. 2):529–537; 1995.PubMedGoogle Scholar
  52. Yunomae, K.; Arima, H.; Hirayama, F.; Uekama, K. Involvement of cholesterol in the inhibitory effect of dimethyl-beta-cyclodextrin on P-glycoprotein and MRP2 function in Caco-2 cells. FEBS Lett. 536:225–231; 2003.PubMedCrossRefGoogle Scholar
  53. Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. A stable non-fluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal. Biochem. 253:162–168; 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Society for In Vitro Biology 2005

Authors and Affiliations

  • Sarah W. Kamau
    • 1
  • Stefanie D. Krämer
    • 2
  • Maja Günthert
    • 2
  • Heidi Wunderli-Allenspach
    • 2
  1. 1.Institute of Veterinary Biochemistry and Molecular BiologyUniversity of ZurichZurichSwitzerland
  2. 2.Institute of Pharmaceutical SciencesETH Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations