Skip to main content

Advertisement

Log in

Immunotherapy for Breast Cancer is Finally at the Doorstep: Immunotherapy in Breast Cancer

  • Breast Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Although immunotherapy is making rapid inroads as a major treatment method for melanoma, lung, bladder, and hereditary colon cancer, breast cancer (BC) remains one of the tumors yet to experience the cellular immunology explosion despite the fact that heavy lymphocyte responses in breast tumors improve response to therapy and can predict for long-term survival.

Results

Immunotherapies in the form of monoclonal antibodies such as trastuzumab and pertuzumab have had an impact on HER2-positive breast cancer (HER2+BC) treatment through antibody-dependent cellular cytotoxicity. Current evidence suggests that checkpoint inhibitors and other cellular therapies are at the doorstep of improving outcomes in triple-negative BC (TNBC) and HER2+BC, especially when combined with standard therapies.

Conclusions

Although this approach has benefitted small numbers of patients to date, numerous clinical trials are underway to define the relative role immunotherapy may play in the treatment of BC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Salgado R, Denkert C, Demaria S, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs Working Group 2014. Ann Oncol. 2015;26:259.

    Article  CAS  PubMed  Google Scholar 

  2. Disis ML, Stanton SE, et al. Triple-negative breast cancer: immune modulation as the new treatment paradigm. ASCO Educational Book, 2015. Am Soc Clin Oncol Educ Book. 2015;2015:e25–30. https://doi.org/10.14694/edbook_am.2015.35.e25.

    Article  Google Scholar 

  3. Stanton S, Adams S, Disis M. Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol. 2016; 2:1354–60.

    Article  PubMed  Google Scholar 

  4. Liu S, Lachapelle J, Leung S, et al. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14:R48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. West NR, Kost SE, Martin SD, et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108:155–62. https://doi.org/10.1038/bjc.2012.524.

    Article  CAS  PubMed  Google Scholar 

  6. Ali HR, Provenzano E, Dawson E, et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25:1536–43.

    Article  CAS  PubMed  Google Scholar 

  7. Adams S, Gray RJ, Demaria S, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199.

  8. Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–7. https://doi.org/10.1200/jco.2011.41.0902.

    Article  CAS  PubMed  Google Scholar 

  9. Dieci MV, Mathieu MC, Guarneri V, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann Oncol. 2015;26(8):1698–704. https://doi.org/10.1093/annonc/mdv239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13. https://doi.org/10.1200/jco.2009.23.7370. (Epub 16 Nov 2009).

    Article  CAS  PubMed  Google Scholar 

  11. Denkert C, von Minckwitz G, Brase JC, et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol. 2015;20;33:983–91. https://doi.org/10.1200/jco.2014.58.1967. (Epub 22 Dec 2014).

    Article  Google Scholar 

  12. Ono M, Tsuda H, Shimizu C, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132:793–805.

    Article  CAS  PubMed  Google Scholar 

  13. Mao Y, Qu Q, Zhang Y, Liu J, Chen X, Shen K. The value of tumor-infiltrating lymphocytes (TILs) for predicting response to neoadjuvant chemotherapy in breast cancer: a systematic review and meta-analysis. PLoS One. 2014;9:e115103. https://doi.org/10.1371/journal.pone.0115103. (eCollection 2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loi S, Michiels S, Salgado R, et al. Tumor-infiltrating lymphocytes is prognostic and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014. https://doi.org/10.1093/annonc/mdu112.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dieci MV, Criscitiello C, Goubar A, et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann Oncol. 2014;25:611–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. García-Martínez E, Luengo G, Chaves A, et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16:488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. West NR, Milne K, Truong PT, et al. Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res. 2011;13:R126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouzin C, Brouet A, De Vriese J, et al. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol. 2007;178:1505–11.

    Article  CAS  PubMed  Google Scholar 

  19. Generali D, Bates G, Berruti A, et al. Immunomodulation of FoxP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res. 2009;15:1046–51.

    Article  CAS  PubMed  Google Scholar 

  20. Demaria S, Volm MD, Shapiro RL, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant therapy. Clin Cancer Res. 2001;7:3025–30.

    CAS  PubMed  Google Scholar 

  21. Ladoire S, Arnould L, Apetoh L, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating FoxP3+ regulatory T cells. Clin Cancer Res. 2008;14:2413–20.

    Article  CAS  PubMed  Google Scholar 

  22. Muenst S, Soysal SD, Gao F, et al. The presence of programmed cell death (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013. https://doi.org/10.1007/s10549-013-2581-3.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cortázar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2015;384:164–72.

    Article  Google Scholar 

  24. Raufi AG, Kemplern SJ. Immunotherapy for advanced gastric and esophageal cancer: preclinical rationale and ongoing clinical investigations. J Gastrointest Oncol. 2015;6:561–9.

    PubMed  PubMed Central  Google Scholar 

  25. Pardoll DM The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nanda R, Chow LQ, Dees EC, et al. A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer (abstract). In: Proceedings of the thirty-seventh annual CTRC-AACR San Antonio breast cancer symposium, 9–13 Dec 2014, San Antonio, Philadelphia 2015;75(9 Suppl). Abstract nr S1–09.

  27. Wimberly H, Brown JR, Schalper KA, et al. PD-L1 expression correlation with tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy in breast cancer. Cancer Immunol Res. 2015;3:326–32.

    Article  CAS  PubMed  Google Scholar 

  28. Cimino-Mathews A, Foote JB, Emns LA, et al. Immune-targeting in breast cancer. Oncol Willston Park. 2015;29:375–85.

    Google Scholar 

  29. Sun S, Fei X, Mao Y, et al. PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother. 2014;63:395–406. https://doi.org/10.1007/s00262-014-1519-x. (Epub 11 Feb 2014).

    Article  CAS  PubMed  Google Scholar 

  30. Sabatier R, Finetti P, Mamessier E, et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 2014;6:5449–64.

    PubMed Central  Google Scholar 

  31. Tomioka N, Azuma M, Ikarashi M, et al. The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC) Breast Cancer. 2018;25:34–42. https://doi.org/10.1007/s12282-017-0781-0. (Epub 2017 May 9).

    Article  PubMed  Google Scholar 

  32. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  33. Sørlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Emens LA, Braiteh FS, Cassier P, et al. Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple-negative breast cancer. Abstract presented at: 37th Annual CTRC-AACR San Antonio breast cancer symposium. Cancer Res. 2015;75(Suppl 15). Abstract 2859.

    Article  Google Scholar 

  35. Adams S, Diamond JR, Hamilton EP, et al. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;20;34(15 Suppl):1009.

  36. Nanda R, Liu MC, Yau C. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2. Abstract presented at ASCO.

  37. Ma C, Zhang Q, Ye J, et al. Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol. 2012;189:5029.

    Article  CAS  PubMed  Google Scholar 

  38. Motz GT, Coukos G. Deciphering and reversing tumor immune suppression. Immunity. 2013;39:61–73. https://doi.org/10.1016/j.immuni.2013.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Manning EA, Ullman JG, Leatherman JM, et al. A vascular endothelial growth factor receptor-2 inhibitor enhances antitumor immunity through an immune-based mechanism. Clin Cancer Res. 2007;13:3951–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kim HJ, Cantor H. CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res. 2014;2:91–8. https://doi.org/10.1158/2326-6066.cir-13-0216.

    Article  CAS  PubMed  Google Scholar 

  41. Mortenson ED, Fu YX. Anti-HER2/neu passive-aggressive immunotherapy. Oncoimmunology. 2014;3:e27296. https://doi.org/10.4161/onci.27296.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Datta J, Rosemblit C, Berk E, et al. Progressive loss of anti-HER2 CD4+ T-helper type 1 response in breast tumorigenesis and the potential for immune restoration. Oncoimmunology. 2015;4:e1022301. https://doi.org/10.1080/2162402x.2015.1022301.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu X, Du L, Feng F, et al. Clinicopathological and prognostic significance of serum cytokine levels in breast cancer. Clin Lab. 2014;60:1145–51.

    CAS  PubMed  Google Scholar 

  44. Fracol M, Datta J, Lowenfeld L, et al. Loss of anti-HER-3 CD4+ T-helper type 1 immunity occurs in breast tumorigenesis and is negatively associated with outcomes. Ann Surg Oncol. 2017;24:407–17. https://doi.org/10.1245/s10434-016-5584-6. (Epub 23 Sept 2016).

    Article  PubMed  Google Scholar 

  45. Sharma A, Koldovsky U, Xu S, et al. HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 2012;118:4354–62. https://doi.org/10.1002/cncr.26734.

    Article  CAS  PubMed  Google Scholar 

  46. Datta J, Berk E, Xu S, et al. Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer. Breast Cancer Res. 2015;17:71. https://doi.org/10.1186/s13058-015-0584-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Czerniecki MD, PhD.

Ethics declarations

Disclosure

Dr. Czerniecki has a sponsored research agreement with immuno-restoration and has intellectual property on the DC1 vaccine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De La Cruz, L.M., Czerniecki, B.J. Immunotherapy for Breast Cancer is Finally at the Doorstep: Immunotherapy in Breast Cancer. Ann Surg Oncol 25, 2852–2857 (2018). https://doi.org/10.1245/s10434-018-6620-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-018-6620-5

Keywords

Navigation