Advertisement

Preoperative Circulating Tumor DNA in Patients with Peritoneal Carcinomatosis is an Independent Predictor of Progression-Free Survival

  • Joel M. Baumgartner
  • Victoria M. Raymond
  • Richard B. Lanman
  • Lisa Tran
  • Kaitlyn J. Kelly
  • Andrew M. Lowy
  • Razelle Kurzrock
Gastrointestinal Oncology
  • 3 Downloads

Abstract

Background

Next-generation sequencing (NGS) is a useful tool for detecting genomic alterations in circulating tumor DNA (ctDNA). To date, most ctDNA tests have been performed on patients with widely metastatic disease. Patients with peritoneal carcinomatosis (metastases) present unique prognostic and therapeutic challenges. We therefore explored preoperative ctDNA in patients with peritoneal metastases undergoing surgery.

Methods

Patients referred for surgical resection of peritoneal metastases underwent preoperative blood-derived ctDNA analysis (clinical-grade NGS [68–73 genes]). ctDNA was quantified as the percentage of altered circulating cell-free DNA (% cfDNA).

Results

Eighty patients had ctDNA testing: 46 (57.5%) women; median age 55.5 years. The following diagnoses were included: 59 patients (73.8%), appendix cancer; 11 (13.8%), colorectal; five (6.3%), peritoneal mesothelioma; two (2.5%), small bowel; one (1.3%) each of cholangiocarcinoma, ovarian, and testicular cancer. Thirty-one patients (38.8%) had detectable preoperative ctDNA alterations, most frequently in the following genes: TP53 (25.8% of all alterations detected) and KRAS (11.3%). Among 15 patients with tissue DNA NGS, 33.3% also had ctDNA alterations (overall concordance = 96.7%). Patients with high ctDNA quantities (≥ 0.25% cfDNA, n = 25) had a shorter progression-free survival (PFS) than those with lower ctDNA quantities (n = 55; 7.8 vs. 15.0 months; hazard ratio 3.23, 95% confidence interval 1.43–7.28, p = 0.005 univariate, p = 0.044 multivariate).

Conclusions

A significant proportion of patients with peritoneal metastases referred for surgical intervention have detectable ctDNA alterations preoperatively. Patients with high levels of ctDNA have a worse prognosis independent of histologic grade.

Notes

Acknowledgment

This study was funded in part by the Joan and Irwin Jacobs Fund philanthropic fund, and National Cancer Institute Grant P30 CA016672.

Disclosures

Dr. Kurzrock has received research funding from Incyte, Genentech, Merck Serono, Pfizer, Sequenom, Foundation Medicine, and Guardant Health; consultant fees from Sequenom, Loxo and Actuate Therapeutics; and speaker fees from Roche. He also has an ownership interest in Curematch, Inc. Ms. Raymond and Dr. Lanman are employees at Guardant Health, Inc. Drs. Baumgartner, Kelly, Lowy and Ms. Tran have no relevant disclosures.

References

  1. 1.
    Schwaederle M, Zhao M, Lee JJ, et al. Impact of precision medicine in diverse cancers: a meta-analysis of Phase II clinical trials. J Clin Oncol. 2015;33(32):3817–25.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sinicrope FA, Okamoto K, Kasi PM, Kawakami H. Molecular biomarkers in the personalized treatment of colorectal cancer. Clin Gastroenterol Hepatol. 2016;14(5):651–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ghadimi BM, Jo P. Cancer gene profiling for response prediction. Methods Mol Biol (Clifton, N.J.). 2016;1381:163–79.Google Scholar
  4. 4.
    Tsimberidou AM, Iskander NG, Hong DS, et al. Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center initiative. Clin Cancer Res. 2012;18(22):6373-6383.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223–38.Google Scholar
  8. 8.
    Janku F, Angenendt P, Tsimberidou AM, et al. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies. Oncotarget. 2015;6(14):12809–21.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Siravegna G, Bardelli A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 2014;15(8):449.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Husain H, Melnikova VO, Kosco K, et al. Monitoring daily dynamics of early tumor response to targeted therapy by detecting circulating tumor DNA in urine. Clin Cancer Res. 2017;23(16):4716–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Surveillance, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence - SEER 9 Regs Research Data, Nov 2013 Sub (1973–2011) ed. National Cancer Institute, DCCPS, Surveillance Research Program, Surveillance Systems Branch 2013.Google Scholar
  12. 12.
    Franko J, Shi Q, Goldman CD, et al. Treatment of colorectal peritoneal carcinomatosis with systemic chemotherapy: a pooled analysis of north central cancer treatment group phase III trials N9741 and N9841. J Clin Oncol. 2012;30(3):263–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Hasovits C, Clarke S. Pharmacokinetics and pharmacodynamics of intraperitoneal cancer chemotherapeutics. Clin Pharmacokinet. 2012;51(4):203–24.CrossRefPubMedGoogle Scholar
  14. 14.
    Chua TC, Moran BJ, Sugarbaker PH, et al. Early- and long-term outcome data of patients with pseudomyxoma peritonei from appendiceal origin treated by a strategy of cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. J Clin Oncol. 2012;30(20):2449–56.CrossRefPubMedGoogle Scholar
  15. 15.
    Franko J, Ibrahim Z, Gusani NJ, Holtzman MP, Bartlett DL, Zeh HJ, 3rd. Cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion versus systemic chemotherapy alone for colorectal peritoneal carcinomatosis. Cancer. 2010;116(16):3756–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Yan TD, Deraco M, Baratti D, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for malignant peritoneal mesothelioma: multi-institutional experience. J Clin Oncol. 2009;27(36):6237–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Cashin PH, Mahteme H, Spang N, et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: a randomised trial. Eur. J. Cancer (Oxford, England : 1990). 2016;53:155–62.Google Scholar
  18. 18.
    van Driel WJ, Koole SN, Sikorska K, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med. 2018;378(3):230–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15(9):2426–32.CrossRefPubMedGoogle Scholar
  20. 20.
    Pasqual EM, Bertozzi S, Bacchetti S, et al. Preoperative assessment of peritoneal carcinomatosis in patients undergoing hyperthermic intraperitoneal chemotherapy following cytoreductive surgery. Anticancer Res. 2014;34(5):2363–8.PubMedGoogle Scholar
  21. 21.
    de Bree E, Koops W, Kroger R, van Ruth S, Witkamp AJ, Zoetmulder FA. Peritoneal carcinomatosis from colorectal or appendiceal origin: correlation of preoperative CT with intraoperative findings and evaluation of interobserver agreement. J Surg Oncol. 2004;86(2):64–73.CrossRefPubMedGoogle Scholar
  22. 22.
    McMullen JRW, Selleck M, Wall NR, Senthil M. Peritoneal carcinomatosis: limits of diagnosis and the case for liquid biopsy. Oncotarget. 2017.Google Scholar
  23. 23.
    Baumgartner JM, Tobin L, Heavey SF, Kelly KJ, Roeland EJ, Lowy AM. Predictors of progression in high-grade appendiceal or colorectal peritoneal carcinomatosis after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2015;22(5):1716–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Lanman RB, Mortimer SA, Zill OA, et al. Analytical and clinical validation of a digital sequencing panel for quantitative, highly accurate evaluation of cell-free circulating tumor DNA. PLoS One. 2015;10(10):e0140712.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Portilla AG, Shigeki K, Dario B, Marcello D. The intraoperative staging systems in the management of peritoneal surface malignancy. J Surg Oncol. 2008;98(4):228–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224.Google Scholar
  27. 27.
    Fang WL, Lan YT, Huang KH, et al. Clinical significance of circulating plasma DNA in gastric cancer. Int J Cancer. 2016;138(12):2974–83.CrossRefPubMedGoogle Scholar
  28. 28.
    Schwaederle M, Chattopadhyay R, Kato S, et al. Genomic alterations in circulating tumor DNA from diverse cancer patients identified by next-generation sequencing. Cancer Res. 2017.Google Scholar
  29. 29.
    Rivlin N, Brosh R, Oren M, Rotter V. Mutations in the p53 Tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466–74.CrossRefGoogle Scholar
  30. 30.
    Schwaederle M, Husain H, Fanta PT, et al. Detection rate of actionable mutations in diverse cancers using a biopsy-free (blood) circulating tumor cell DNA assay. Oncotarget. 2016;7(9):9707–17.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Schwaederle MC, Patel SP, Husain H, et al. Utility of Genomic Assessment of Blood-Derived Circulating Tumor DNA (ctDNA) in Patients with Advanced Lung Adenocarcinoma. Clin Cancer Res. 2017;23(17):5101–11.CrossRefPubMedGoogle Scholar
  32. 32.
    Schwaederle M, Husain H, Fanta PT, et al. Use of liquid biopsies in clinical oncology: pilot experience in 168 patients. Clin Cancer Res. 2016;22(22):5497–505.CrossRefPubMedGoogle Scholar
  33. 33.
    Austin F, Mavanur A, Sathaiah M, et al. Aggressive management of peritoneal carcinomatosis from mucinous appendiceal neoplasms. Ann Surg Oncol. 2012;19(5):1386–93.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kato S, Lippman SM, Flaherty KT, Kurzrock R. The conundrum of genetic “Drivers” in benign conditions. J Nat Cancer Inst. 2016;108(8).Google Scholar

Copyright information

© Society of Surgical Oncology 2018

Authors and Affiliations

  • Joel M. Baumgartner
    • 1
  • Victoria M. Raymond
    • 2
  • Richard B. Lanman
    • 2
  • Lisa Tran
    • 3
  • Kaitlyn J. Kelly
    • 1
  • Andrew M. Lowy
    • 1
  • Razelle Kurzrock
    • 3
  1. 1.Department of Surgery, Division of Surgical OncologyUniversity of California, San DiegoLa JollaUSA
  2. 2.Guardant Health, IncRedwood CityUSA
  3. 3.Center for Personalized Cancer TherapyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations