Advertisement

Annals of Surgical Oncology

, Volume 25, Issue 3, pp 792–800 | Cite as

STMN1 is Overexpressed in Adrenocortical Carcinoma and Promotes a More Aggressive Phenotype In Vitro

  • Anna Aronova
  • Irene M. Min
  • Michael J. P. Crowley
  • Suraj J. Panjwani
  • Brendan M. Finnerty
  • Theresa Scognamiglio
  • Yi-Fang Liu
  • Timothy G. Whitsett
  • Shipra Garg
  • Michael J. Demeure
  • Olivier Elemento
  • Rasa Zarnegar
  • Thomas J. Fahey III
Endocrine Tumors

Abstract

Background

Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis and few therapeutic options. Stathmin1 (STMN1) is a cytosolic protein involved in microtubule dynamics through inhibition of tubulin polymerization and promotion of microtubule depolymerization, which has been implicated in carcinogenesis and aggressive behavior in multiple epithelial malignancies. We aimed to evaluate expression of STMN1 in ACC and to elucidate how this may contribute to its malignant phenotype.

Methods

STMN1 was identified by RNA sequencing as a highly differentially expressed gene in human ACC samples compared with benign adrenal tumors. Expression was confirmed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical (IHC) staining of a tissue microarray (TMA) from two independent cohorts. The biologic relevance of STMN1 was investigated in NCI-H295R cells by lentivirus-mediated silencing.

Results

Differential gene expression demonstrated an eightfold increase in STMN1 messenger RNA (mRNA) in malignant compared with benign adrenal tissue. IHC showed significantly higher expression of STMN1 protein in ACC compared with normal and benign tissues. STMN1 knockdown in an ACC cell line resulted in decreased cell viability, cell-cycle arrest at G0/G1, and increased apoptosis in serum-starved conditions compared with scramble short hairpin RNA (shRNA) controls. STMN1 knockdown also decreased migration, invasion, and anchorage-independent growth compared with controls.

Conclusions

STMN1 is overexpressed in human ACC samples, and knockdown of this target in vitro resulted in a less aggressive phenotype of ACC, particularly under serum-starved conditions. Further study is needed to investigate the feasibility of interfering with STMN1 as a potential therapeutic target.

Notes

Funding

This study was supported by the Weill Cornell Clinical and Translational Science Center NIH/NCATS Grant TL1TR000459.

Supplementary material

10434_2017_6296_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 114 kb)
10434_2017_6296_MOESM2_ESM.docx (60 kb)
Supplementary material 2 (DOCX 59 kb)
10434_2017_6296_MOESM3_ESM.tif (16 mb)
Supplementary material 3 (TIFF 16,365 kb)
10434_2017_6296_MOESM4_ESM.tif (8.8 mb)
Supplementary material 4 (TIFF 8977 kb)
10434_2017_6296_MOESM5_ESM.tif (14.3 mb)
Supplementary material 5 (TIFF 14,665 kb)

References

  1. 1.
    Fassnacht M, Libe R, Kroiss M, Allolio B. Adrenocortical Carcinoma: A Clinician’s Update. Nat Rev Endocrinol. 2011;7:323–35.CrossRefPubMedGoogle Scholar
  2. 2.
    Fassnacht M, Kroiss M, Allolio B. Update in adrenocortical carcinoma. J Clin Endocrinol Metab. 2013;98(12):4551–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Icard P, Goudet P, Charpenay C, Andreassian B, Carnaille B, Chapuis Y, et al. Adrenocortical carcinomas: Surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons Study Group. World J Surg. 2001;25(7):891–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Bilimoria KY, Shen WT, Elaraj D, Bentrem DJ, Winchester DJ, Kebebew E, et al. Adrenocortical carcinoma in the United States: treatment utilization and prognostic factors. Cancer. 2008;113(11):3130–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Datta J, Roses RE. Surgical Management of Adrenocortical Carcinoma: An Evidence-Based Approach. Surg Oncol Clin N Am. 2016;25(1):153–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Libé R. Adrenocortical carcinoma (ACC): diagnosis, prognosis, and treatment. Front Cell Dev Biol. 2015;3:45.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Creemers SG, Hofland L, Korpershoek E, Franssen GJ., van Kemenade FJ, de Herder WW, et al. Future directions in the diagnosis and medical treatment of adrenocortical carcinoma. Endocr Relat Cancer. 2016;23(1):R43-69.PubMedGoogle Scholar
  8. 8.
    Wortmann S, Quinkler M, Ritter C, Kroiss M, Johanssen S, Hahner S, et al. Bevacizumab plus capecitabine as a salvage therapy in advanced adrenocortical carcinoma. Eur J Endocrinol. 2010;162:349–56.CrossRefPubMedGoogle Scholar
  9. 9.
    O’Sullivan C, Edgerly M, Velarde M, Wilkerson J, Venkatesan AM, Pittaluga S, et al. The VEGF inhibitor axitinib has limited effectiveness as a therapy for adrenocortical cancer. J Clin Endocrinol Metab. 2014;99(4):1291–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fassnacht M, Berruti A, Baudin E, Demeure MJ, Gilbert J, Haak H, et al. Linsitinib (OSI-906) versus placebo for patients with locally advanced or metastatic adrenocortical carcinoma: a double-blind, randomised, phase 3 study. Lancet Oncol. 2015;16(4):426–35.CrossRefPubMedGoogle Scholar
  11. 11.
    Costa R, Carneiro BA, Tavora F, Pai SG, Kaplan B, Chae YK, et al. The challenge of developmental therapeutics for adrenocortical carcinoma. Oncotarget. 2016;7(29):46734–49.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Berruti A, Sperone P, Ferrero A, Germano A, Ardito A, Priola M, et al. Phase II study of weekly paclitaxel and sorafenib as second/third-line therapy in patients with adrenocortical carcinoma. Eur J Endocrinol. 2012;166:451–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle. J Cell Biochem. 2004;93(2):242–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Akhtar J, Wang Z, Yu C, Zhang ZP, Bi MM. STMN-1 Gene: A Predictor of Survival in Stage IIA Esophageal Squamous Cell Carcinoma After Ivor-Lewis Esophagectomy. Ann Surg Oncol. 2014;21(1):315–21.CrossRefPubMedGoogle Scholar
  15. 15.
    He X, Liao Y, Lu W, Xu G, Tong H, Ke J, et al. Elevated STMN1 promotes tumor growth and invasion in endometrial carcinoma. Tumour Biol. 2016;37(7):9951–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Hsieh S, Huang S, Yu M, Yeh T, Chen T, Lin Y, et al. Stathmin1 overexpression associated with polyploidy, tumor-cell invasion, early recurrence, and poor prognosis in human hepatoma. Mol Carcinog. 2010;49(5):476–87.PubMedGoogle Scholar
  17. 17.
    Kang W, Tong JHM, Chan AWH, Lung RWM, Chau SL, Wong QWL, et al. Stathmin1 Plays Oncogenic Role and Is a Target of MicroRNA-223 in Gastric Cancer. PLOS One. 2012;7(3):33919.CrossRefGoogle Scholar
  18. 18.
    Kouzu Y, Uzawa K, Koike H, Saito K, Nakashima D, Higo M, et al. Overexpression of stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer. 2006;94:717–23.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuang X, Chen L, Zhang Z, Liu Y, Zheng Y. Stathmin and phospho-stathmin protein signature is associated with survival outcomes of breast cancer patients. Oncotarget. 2015;6(26):22227–38.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang H, Guo X, Guo S, Wang Q, Chen X. STMN1 in colon cancer: expression and prognosis in Chinese patients. Eur Rev Med Pharmacol Sci. 2016;20:2038–44.PubMedGoogle Scholar
  21. 21.
    Yu W, Tan XF, Tan HT, Lim TK, Chung MCM. Unbiased Proteomic and Transcript Analyses Reveal that Stathmin-1 Silencing Inhibits Colorectal Cancer Metastasis and Sensitizes to 5-Fluorouracil Treatment. Mol Cancer Res. 2014;12(12):1717–28.CrossRefGoogle Scholar
  22. 22.
    Byme F, Yang L, Philliips P, Hansford L, Fletcher J, Ormandy C, et al. RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene. 2014;33(7):882–90.CrossRefGoogle Scholar
  23. 23.
    Wang S, Akhtar J, Wang Z. Anti-STMN1 therapy improves sensitivity to antimicrotubule drugs in esophageal squamous cell carcinoma. Tumour Biol. 2015;36(10):7797–806.CrossRefPubMedGoogle Scholar
  24. 24.
    Gadzar A, Oie H, Shackleton C, Chen T, Triche T, Myers C, et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis. Cancer Res. 1990;50(17):5488–96.Google Scholar
  25. 25.
    Roos G, Brattsand G, Landberg G, Marklund U, Gullberg M. Expression of oncoprotein 18 in human leukemias and lymphomas. Leukemia. 1993;7(10):1538–46.PubMedGoogle Scholar
  26. 26.
    Rana S, Maples P, Senzer N, Nemunaitis J. Stathmin1: A novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther. 2008;8(9):1461–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Akhtar J, Wang Z, Yu C, Li C-S, Shi Y-L, Liu H-J. STMN-1 is a potential marker of lymph node metastasis in distal esophageal adenocarcinomas and silencing its expression can reverse malignant phenotype of tumor cells. BMC Cancer. 2014;14:28.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Watanabe A, Suzuki H, Yokobori T, Tsukagoshi M, Altan B, Kubo N, et al. Stathmin1 regulates p27 expression, proliferation and drug resistance, resulting in poor clinical prognosis in cholangiocarcinoma. Cancer Sci. 2014;105(6):690–6.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yuan R, Jeng Y, Chen H, Lai P, Pan H, Hsieh F, et al. Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol. 2006;309:549–58.CrossRefGoogle Scholar
  30. 30.
    Reyes HD, Miecznikowski J, Gonzalez-Bosquet J, Devor EJ, Zhang Y, Thiel KW, et al. High stathmin expression is a marker for poor clinical outcome in endometrial cancer: an NRG oncology group/gynecologic oncology group study. Gynecol Oncol. 2017;146(2):247-253.CrossRefPubMedGoogle Scholar
  31. 31.
    Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4(4):253–65.CrossRefPubMedGoogle Scholar
  32. 32.
    Alli E, Bash-Babula J, Yang J-M, Hait WN. Effect of Stathmin on the Sensitivity to Antimicrotubule Drugs in Human Breast Cancer. Cancer Res. 2002;62(23):6864–9.PubMedGoogle Scholar
  33. 33.
    Alli E, Yang J, Ford J, Hait W. Reversal of stathmin-mediated resistance to paclitaxel and vinblastine in human breastcarcinoma cells. Mol Pharmacol. 2007;71(5):1233–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Z, He R, Xia H, Wei Y, Wu S. Knockdown of STMN1 enhances osteosarcoma cell chemosensitivity through inhibition of autophagy. Oncol Lett. 2017; 13(5) 3465–70.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhang X, Ji JF, Yang Y, Zhang J, Shen LF. Stathmin1 increases radioresistance by enhancing autophagy in non-small-cell lung cancer cells. Onco Targets Ther. 2016;9:2565–74.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang Z, Jay CM, Evans, C, Kumar P, Phalon C, Rao DD, et al. Preclinical Biodistribution and Safety Evaluation of a pbi-shRNA STMN1 Lipoplex after Subcutaneous Delivery. Toxicol Sci. 2017;155(2):400–8.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2017

Authors and Affiliations

  • Anna Aronova
    • 1
  • Irene M. Min
    • 1
  • Michael J. P. Crowley
    • 1
  • Suraj J. Panjwani
    • 1
  • Brendan M. Finnerty
    • 1
  • Theresa Scognamiglio
    • 2
  • Yi-Fang Liu
    • 2
  • Timothy G. Whitsett
    • 3
  • Shipra Garg
    • 3
  • Michael J. Demeure
    • 3
  • Olivier Elemento
    • 4
  • Rasa Zarnegar
    • 1
  • Thomas J. Fahey III
    • 1
  1. 1.Department of Surgery, Weill Cornell Medical CenterNew York Presbyterian HospitalNew YorkUSA
  2. 2.Department of Pathology and Laboratory Medicine, Weill Cornell Medical CenterNew York Presbyterian HospitalNew YorkUSA
  3. 3.Translational Genomics Research InstitutePhoenixUSA
  4. 4.Department of Physiology and Biophysics, Weill Cornell Medical CenterNew York Presbyterian HospitalNew YorkUSA

Personalised recommendations