Advertisement

Annals of Surgical Oncology

, Volume 24, Issue 1, pp 108–116 | Cite as

Sentinel Lymph Node Genes to Predict Prognosis in Node-Positive Melanoma Patients

  • Hongying Hao
  • Deyi Xiao
  • Jianmin Pan
  • Jifu Qu
  • Michael Egger
  • Sabine Waigel
  • Mary Ann G. Sanders
  • Wolfgang Zacharias
  • Shesh N. Rai
  • Kelly M. McMasters
Melanomas

Abstract

Purpose

Melanoma patients with a single microscopically-positive sentinel lymph node (SLN) are classified as stage III and are often advised to undergo expensive and substantially toxic adjuvant therapy. However, the 5-year survival rate for these patients, with or without adjuvant therapy, varies from 14 to 85 %, representing a heterogeneous biological population with a variable prognosis. We aimed to identify an SLN gene signature to aid in risk stratification of patients with tumor-positive SLNs.

Methods

Microarray experiments were performed to screen SLN genes in recurrence (N = 39) versus non-recurrence (N = 58) groups in the training dataset. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) assay was applied to confirm the expression of selected SLN genes, which were further verified using an independent validation cohort (N = 30). Area under the receiver operating characteristic curve (AUC) was calculated to evaluate prognostic accuracy of the selected SLN gene panel, and the prognostic value of our SLN gene signature was also compared with the current American Joint Committee on Cancer (AJCC) staging system.

Results

We identified two SLN genes (PIGR and TFAP2A) that provided high prognostic accuracy in SLN-positive melanoma patients (AUC = 0.864). These two SLN genes, along with clinicopathological features, can differentiate the high- and low-risk groups in node-positive melanoma patients in this cohort.

Conclusion

The two SLN genes, when combined with clinicopathological features, may offer a new tool for personalized patient risk assessment.

Keywords

Melanoma Overall Survival Sentinel Lymph Node Sentinel Lymph Node Biopsy Training Dataset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This work was supported by the University of Louisville School of Medicine Collaborative Matching Grant (H. Hao), University of Louisville Clinical and Translational Science Pilot Grant Program Innovative Award (K.M. McMasters), and Melanoma Research Foundation Established Investigator Award (K.M. McMasters). The authors thank Mrs Margaret Abby for her expert assistance with manuscript preparation, and the University of Louisville genomics facility for their expert support of this work. We are grateful to Ms Sherri Matthews at the Department of Surgery, and Dr Andrei Smolenkov at the James Graham Brown Cancer Center Bio-Repository (University of Louisville), for their coordination with the clinical samples.

Disclosure

Hongying Hao, Deyi Xiao, Jianmin Pan, Jifu Qu, Michael Egger, Sabine Waigel, Mary Ann G. Sanders, Wolfgang Zacharias, Shesh N. Rai, and Kelly M. McMasters disclose no potential conflicts of interest.

Supplementary material

10434_2016_5575_MOESM1_ESM.doc (492 kb)
Supplementary material 1 (DOC 492 kb)

References

  1. 1.
    de Giorgi V, Grazzini M, Massi D. Sentinel-lymph-node biopsy for cutaneous melanoma. N Engl J Med. 2011;365:570–1.PubMedGoogle Scholar
  2. 2.
    Balch CM, Gershenwald JE, Soong SJ, et al. Update on the melanoma staging system: the importance of sentinel node staging and primary tumor mitotic rate. J Surg Oncol. 2011;104:379–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Averbook BJ. Mitotic rate and sentinel lymph node tumor burden topography: integration into melanoma staging and stratification use in clinical trials. J Clin Oncol. 2011;29:2137–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Ellis MC, Weerasinghe R, Corless CL, et al. Sentinel lymph node staging of cutaneous melanoma: predictors and outcomes. Am J Surg. 2010;199:663–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Balch CM, Gershenwald JE, Soong SJ, et al. Multivariate analysis of prognostic factors among 2,313 patients with stage III melanoma: comparison of nodal micrometastases versus macrometastases. J Clin Oncol. 2010;28:2452–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Balch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27:6199–206.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Winnepenninckx V, van den Oord JJ. Gene expression profiling and clinical outcome in melanoma: in search of novel prognostic factors. Expert Rev Anticancer Ther. 2007;7:1611–31.CrossRefPubMedGoogle Scholar
  8. 8.
    Tímár J, Gyorffy B, Rásó E. Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis. 2010;27:371–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Segura MF, Belitskaya-Lévy I, Rose AE, et al. Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res. 2010;16:1577–86.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hardesty WM, Kelley MC, Mi D, et al. Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics. 2011;74:1002–14.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    McMasters KM, Egger ME, Edwards MJ, et al. Final results of the Sunbelt Melanoma Trial: a multi-institutional prospective randomized phase III study evaluating the role of adjuvant high-dose interferon alfa-2b and completion lymph node dissection for patients staged by sentinel lymph node biopsy. J Clin Oncol. 2016;34:1079–86.CrossRefPubMedGoogle Scholar
  12. 12.
    Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Khan HA. ArrayVigil: a methodology for statistical comparison of gene signatures using segregated-one-tailed (SOT) Wilcoxon’s signed-rank test. J Mol Biol. 2005;345:645–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statis Soc B. 1995;57:289–300.Google Scholar
  16. 16.
    Cary NC. The SAS system V9. Cary, NC: SAS Institute Inc.; 2003.Google Scholar
  17. 17.
    Gonen M. Receiver operating charateristics (ROC) curves. In: Proceedings of the thirty-first annual SAS users group international conference; 2006. p. 210–31.Google Scholar
  18. 18.
    Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457–81.CrossRefGoogle Scholar
  19. 19.
    Cox DR. Regression and life-tables. J R Stat Soc B. 1972;34:187–220.Google Scholar
  20. 20.
    Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data. 2nd ed. New York: Wiley; 2002.CrossRefGoogle Scholar
  21. 21.
    Lee JH, Chen Y, Chan JL, et al. Molecular analysis of melanoma-induced sentinel lymph node immune dysfunction. Cancer Immunol Immunother. 2011;60:685–92.CrossRefPubMedGoogle Scholar
  22. 22.
    Negin B, Panka D, Wang W, et al. Effect of melanoma on immune function in the regional lymph node basin. Clin Cancer Res. 2008;14:654–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee JH, Torisu-Itakara H, Cochran AJ, et al. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res. 2005;11:107–12.PubMedGoogle Scholar
  24. 24.
    Torisu-Itakura H, Lee JH, Scheri RP, et al. Molecular characterization of inflammatory genes in sentinel and nonsentinel nodes in melanoma. Clin Cancer Res. 2007;13:3125–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Botella-Estrada R, Dasí F, Ramos D, et al. Cytokine expression and dendritic cell density in melanoma sentinel nodes. Melanoma Res. 2005;15:99–106.CrossRefPubMedGoogle Scholar
  26. 26.
    Ai J, Tang Q, Wu Y, et al. The role of polymeric immunoglobulin receptor in inflammation induced tumor metastasis of human hepatocellular carcinoma. J Natl Cancer Inst. 2012;103:1696–1712.CrossRefGoogle Scholar
  27. 27.
    Wang X, Du J, Gu P, et al. Polymeric immunoglobulin receptor expression is correlated with poor prognosis in patients with osteosarcoma. Mol Med Rep. 2014;9:2105–10.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Niu H, Wang K, Wang Y. Polymeric immunoglobulin receptor expression is predictive of poor prognosis in glioma patients. Int J Clin Exp Med. 2014;7:2185–90.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tellez C, McCarty M, Ruiz M, et al. Loss of activator protein-2alpha results in overexpression of protease-activated receptor-1 and correlates with the malignant phenotype of human melanoma. J Biol Chem. 2003;278:46632–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Berger AJ, Davis DW, Tellez C, et al. Automated quantitative analysis of activator protein-2alpha subcellular expression in melanoma tissue microarrays correlates with survival prediction. Cancer Res. 2005;65:11185–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Bar-Eli M. Role of AP-2 in tumor growth and metastasis of human melanoma. Cancer Metastasis Rev. 1999;18:377–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Nyormoi O, Bar-Eli M. Transcriptional regulation of metastasis-related genes in human melanoma. Clin Exp Metastasis. 2003;20:251–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Decarlo K, Emley A, Dadzie OE, et al. Laser capture microdissection: methods and applications. Methods Mol Biol. 2011;755:1–15.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2016

Authors and Affiliations

  • Hongying Hao
    • 1
  • Deyi Xiao
    • 1
  • Jianmin Pan
    • 2
  • Jifu Qu
    • 1
  • Michael Egger
    • 1
  • Sabine Waigel
    • 3
  • Mary Ann G. Sanders
    • 4
  • Wolfgang Zacharias
    • 3
    • 5
  • Shesh N. Rai
    • 2
  • Kelly M. McMasters
    • 1
  1. 1.Department of SurgeryUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Biostatistics Shared Facility, James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Genomics Facility, James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleUSA
  4. 4.Department of PathologyUniversity of Louisville School of MedicineLouisvilleUSA
  5. 5.Department of Medicine and Department of Pharmacology and Toxicology, James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations