Advertisement

Annals of Surgical Oncology

, Volume 23, Issue 8, pp 2548–2555 | Cite as

KRAS and Combined KRAS/TP53 Mutations in Locally Advanced Rectal Cancer are Independently Associated with Decreased Response to Neoadjuvant Therapy

  • Oliver S. Chow
  • Deborah Kuk
  • Metin Keskin
  • J. Joshua Smith
  • Niedzica Camacho
  • Raphael Pelossof
  • Chin-Tung Chen
  • Zhenbin Chen
  • Karin Avila
  • Martin R. Weiser
  • Michael F. Berger
  • Sujata Patil
  • Emily Bergsland
  • Julio Garcia-Aguilar
Colorectal Cancer

Abstract

Background

The response of rectal cancers to neoadjuvant chemoradiation (CRT) is variable, but tools to predict response remain lacking. We evaluated whether KRAS and TP53 mutations are associated with pathologic complete response (pCR) and lymph node metastasis after adjusting for neoadjuvant regimen.

Methods

Retrospective analysis of 229 pretreatment biopsies from patients with stage II/III rectal cancer was performed. All patients received CRT. Patients received 0–8 cycles of FOLFOX either before or after CRT, but prior to surgical excision. A subset was analyzed to assess concordance between mutation calls by Sanger Sequencing and a next-generation assay.

Results

A total of 96 tumors (42 %) had KRAS mutation, 150 had TP53 mutation (66 %), and 59 (26 %) had both. Following neoadjuvant therapy, 59 patients (26 %) achieved pCR. Of 133 KRAS wild-type tumors, 45 (34 %) had pCR, compared with 14 of 96 (15 %) KRAS mutant tumors (p = .001). KRAS mutation remained independently associated with a lower pCR rate on multivariable analysis after adjusting for clinical stage, CRT-to-surgery interval and cycles of FOLFOX (OR 0.34; 95 % CI 0.17–0.66, p < .01). Of 29 patients with KRAS G12V or G13D, only 2 (7 %) achieved pCR. Tumors with both KRAS and TP53 mutation were associated with lymph node metastasis. The concordance between platforms was high for KRAS (40 of 43, 93 %).

Conclusions

KRAS mutation is independently associated with a lower pCR rate in locally advanced rectal cancer after adjusting for variations in neoadjuvant regimen. Genomic data can potentially be used to select patients for “watch and wait” strategies.

Keywords

Rectal Cancer Sanger Sequencing KRAS Mutation TP53 Mutation Timing Trial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

This study was supported by the National Institutes of Health (NIH), National Cancer Institute (NCI) R01 Grant CA090559 (JGA) and the MSK Core Grant P30 CA008748.

Collaborators

Additional thanks for the contributions of Garrett Nash, Larissa Temple, José Guillem, Philip Paty (Surgical faculty members from the Colorectal Service of Memorial Sloan Kettering Cancer Center) and members of the Timing of Rectal Cancer Response to Chemoradiation Consortium: David Smith, Jorge Marcet, Peter Cataldo, Madhulika Varma, Anjali Kumar, Samuel Oommen, Theodore Coutsoftides, Steven Hunt, Michael Stamos, Charles Ternent, Daniel Herzig, Alessandro Fichera, Blase Polite, David Dietz.

Supplementary material

10434_2016_5205_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Habr-Gama A, Perez RO, Nadalin W, et al. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711–7; discussion 717–8.Google Scholar
  2. 2.
    Smith JD, Ruby JA, Goodman KA, et al. Nonoperative management of rectal cancer with complete clinical response after neoadjuvant therapy. Ann Surg. 2012;256:965–72. doi: 10.1097/SLA.0b013e3182759f1c.CrossRefPubMedGoogle Scholar
  3. 3.
    Guillem JG, Chessin DB, Shia J, et al. Clinical examination following preoperative chemoradiation for rectal cancer is not a reliable surrogate end point. J Clin Oncol. 2005;23:3475–9. doi: 10.1200/JCO.2005.06.114.CrossRefPubMedGoogle Scholar
  4. 4.
    Radovanovic Z, Breberina M, Petrovic T, Golubovic A, Radovanovic D. Accuracy of endorectal ultrasonography in staging locally advanced rectal cancer after preoperative chemoradiation. Surg Endosc. 2008;22:2412–5. doi: 10.1007/s00464-008-0037-3.CrossRefPubMedGoogle Scholar
  5. 5.
    Huh JW, Park YA, Jung EJ, Lee KY, Sohn S-K. Accuracy of endorectal ultrasonography and computed tomography for restaging rectal cancer after preoperative chemoradiation. J Am Coll Surg. 2008;207:7–12. doi: 10.1016/j.jamcollsurg.2008.01.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Leibold T, Akhurst TJ, Chessin DB, et al. Evaluation of 18F-FDG-PET for early detection of suboptimal response of rectal cancer to preoperative chemoradiotherapy: a prospective analysis. Ann Surg Oncol. 2011;18:2783–9. doi: 10.1245/s10434-011-1634-2.CrossRefPubMedGoogle Scholar
  7. 7.
    Memon S, Lynch AC, Bressel M, Wise AG, Heriot AG. Systematic review and meta-analysis of the accuracy of MRI and ERUS in the restaging and response assessment of rectal cancer following neoadjuvant therapy. Colorectal Dis. 2015;17:748–61. doi: 10.1111/codi.12976.CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia-Aguilar J, Chen Z, Smith DD, et al. Identification of a biomarker profile associated with resistance to neoadjuvant chemoradiation therapy in rectal cancer. Ann Surg. 2011;254:486–92; discussion 492–3. doi: 10.1097/SLA.0b013e31822b8cfa.
  9. 9.
    Garcia-Aguilar J, Chow OS, Smith DD, et al. Effect of adding mFOLFOX6 after neoadjuvant chemoradiation in locally advanced rectal cancer: a multicentre, phase 2 trial. Lancet Oncol. 2015;16:957–66. doi: 10.1016/S1470-2045(15)00004-2.CrossRefPubMedGoogle Scholar
  10. 10.
    Kalady MF, de Campos-Lobato LF, Stocchi L, Geisler DP, Dietz D, Lavery IC, Fazio VW. Predictive factors of pathologic complete response after neoadjuvant chemoradiation for rectal cancer. Ann Surg. 2009;250:582–9. doi: 10.1097/SLA.0b013e3181b91e63.PubMedGoogle Scholar
  11. 11.
    Wolthuis AM, Penninckx F, Haustermans K, De Hertogh G, Fieuws S, Van Cutsem E, D’Hoore A. Impact of interval between neoadjuvant chemoradiotherapy and TME for locally advanced rectal cancer on pathologic response and oncologic outcome. Ann Surg Oncol. 2012;19:2833–41. doi: 10.1245/s10434-012-2327-1.CrossRefPubMedGoogle Scholar
  12. 12.
    Zeng W-G, Zhou Z-X, Liang J-W, et al. Impact of interval between neoadjuvant chemoradiotherapy and surgery for rectal cancer on surgical and oncologic outcome. J Surg Oncol. 2014;110:463–7. doi: 10.1002/jso.23665.CrossRefPubMedGoogle Scholar
  13. 13.
    Calvo FA, Morillo V, Santos M, et al. Interval between neoadjuvant treatment and definitive surgery in locally advanced rectal cancer: impact on response and oncologic outcomes. J Cancer Res Clin Oncol. 2014;140:1651–60. doi: 10.1007/s00432-014-1718-z.CrossRefPubMedGoogle Scholar
  14. 14.
    Cercek A, Goodman KA, Hajj C, et al. Neoadjuvant chemotherapy first, followed by chemoradiation and then surgery, in the management of locally advanced rectal cancer. J Natl Compr Canc Netw. 2014;12:513–9. http://www.ncbi.nlm.nih.gov/pubmed/24717570. Accessed Dec 15, 2014.
  15. 15.
    Gao Y-H, Lin J-Z, An X, et al. Neoadjuvant sandwich treatment with oxaliplatin and capecitabine administered prior to, concurrently with, and following radiation therapy in locally advanced rectal cancer: a prospective phase 2 trial. Int J Radiat Oncol Biol Phys. 2014;90:1153–60. doi: 10.1016/j.ijrobp.2014.07.021.CrossRefPubMedGoogle Scholar
  16. 16.
    Cheng DT, Mitchell T, Zehir A, et al. MSK-IMPACT: a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J Mol Diagn. 2015;17:251–64. doi: 10.1016/j.jmoldx.2014.12.006.CrossRefPubMedGoogle Scholar
  17. 17.
    Hyman DM, Solit DB, Arcila ME, et al. Precision medicine at Memorial Sloan Kettering Cancer Center: clinical next-generation sequencing enabling next-generation targeted therapy trials. Drug Discov Today. 2015;20:1422–8. doi: 10.1016/j.drudis.2015.08.005.CrossRefPubMedGoogle Scholar
  18. 18.
    Duldulao MP, Lee W, Nelson RA, Li W, Chen Z, Kim J, Garcia-Aguilar J. Mutations in specific codons of the KRAS oncogene are associated with variable resistance to neoadjuvant chemoradiation therapy in patients with rectal adenocarcinoma. Ann Surg Oncol. 2013;20:2166–71. doi: 10.1245/s10434-013-2910-0.CrossRefPubMedGoogle Scholar
  19. 19.
    Lièvre A, Bachet J-B, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66:3992–5. doi: 10.1158/0008-5472.CAN-06-0191.CrossRefPubMedGoogle Scholar
  20. 20.
    Michelassi F, Erroi F, Roncella M, Block GE. Ras oncogene and the acquisition of metastasizing properties by rectal adenocarcinoma. Dis Colon Rectum. 1989;32:665–8. http://www.ncbi.nlm.nih.gov/pubmed/2666052. Accessed June 8, 2015.
  21. 21.
    Segelov E, Chan D, Shapiro J, Price TJ, Karapetis CS, Tebbutt NC, Pavlakis N. The role of biological therapy in metastatic colorectal cancer after first-line treatment: a meta-analysis of randomised trials. Br J Cancer. 2014;111:1122–31. doi: 10.1038/bjc.2014.404.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lee D-W, Kim KJ, Han S-W, et al. KRAS mutation is associated with worse prognosis in stage III or high-risk stage II colon cancer patients treated with adjuvant FOLFOX. Ann Surg Oncol. 2015;22:187–94. doi: 10.1245/s10434-014-3826-z.CrossRefPubMedGoogle Scholar
  23. 23.
    Yoon HH, Tougeron D, Shi Q, et al. KRAS codon 12 and 13 mutations in relation to disease-free survival in BRAF-wild-type stage III colon cancers from an adjuvant chemotherapy trial (N0147 alliance). Clin Cancer Res. 2014;20:3033–43. doi: 10.1158/1078-0432.CCR-13-3140.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Clancy C, Burke JP, Coffey JC. KRAS mutation does not predict the efficacy of neo-adjuvant chemoradiotherapy in rectal cancer: a systematic review and meta-analysis. Surg Oncol. 2013;22:105–11. doi: 10.1016/j.suronc.2013.02.001.CrossRefPubMedGoogle Scholar
  25. 25.
    Gaedcke J, Grade M, Jung K, et al. KRAS and BRAF mutations in patients with rectal cancer treated with preoperative chemoradiotherapy. Radiother Oncol. 2010;94:76–81. doi: 10.1016/j.radonc.2009.10.001.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2016

Authors and Affiliations

  • Oliver S. Chow
    • 1
  • Deborah Kuk
    • 2
  • Metin Keskin
    • 2
  • J. Joshua Smith
    • 2
  • Niedzica Camacho
    • 2
  • Raphael Pelossof
    • 2
  • Chin-Tung Chen
    • 2
  • Zhenbin Chen
    • 3
  • Karin Avila
    • 2
  • Martin R. Weiser
    • 2
  • Michael F. Berger
    • 2
  • Sujata Patil
    • 2
  • Emily Bergsland
    • 4
  • Julio Garcia-Aguilar
    • 2
  1. 1.Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.Memorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.University of Alabama at BirminghamBirminghamUSA
  4. 4.University of CaliforniaSan FranciscoUSA

Personalised recommendations