Skip to main content

Advertisement

Log in

Pyruvate Kinase M2 Modulates Esophageal Squamous Cell Carcinoma Chemotherapy Response by Regulating the Pentose Phosphate Pathway

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme that regulates the Warburg effect and is necessary for tumor growth. However, its role in chemoresistance has not been fully elucidated.

Methods

PKM2 expression was examined by immunohistochemistry in 205 tissue samples from thoracic esophageal squamous cell carcinoma patients who had undergone curative surgery (100 patients with surgery alone and 105 patients with preoperative chemotherapy). The relationship between PKM2 expression and clinicopathological factors, including chemotherapy response was examined. In vitro assays were performed to determine the mechanism of PKM2-related chemoresistance, using esophageal squamous cell carcinoma cell lines.

Results

PKM2 expression significantly correlated with tumor cell differentiation, tumor depth, and tumor stage. Strong PKM2 expression significantly correlated with decreased survival rates and poor response to chemotherapy. In vitro assays showed that PKM2 inhibition significantly decreased cisplatin resistance and increased apoptosis. In siPKM2-transfected cells, pyruvate kinase activity paradoxically increased, followed by increased intracellular reactive oxygen species levels. The ratio of NADPH/NADP, which is an indicator of glucose influx into pentose phosphate pathway (PPP), significantly decreased in siPKM2-transfected cells upon cisplatin treatment compared with control cells.

Conclusions

PKM2 expression is associated with esophageal squamous cell carcinoma chemoresistance. PKM2 inhibition can restore cisplatin sensitivity by inactivating PPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  PubMed  Google Scholar 

  2. Morita M, Otsu H, Kawano H, et al. Gender differences in prognosis after esophagectomy for esophageal cancer. Surg Today. 2014;44:505–12.

    Article  PubMed  Google Scholar 

  3. Okumura H, Uchikado Y, Setoyama T, et al. Biomarkers for predicting the response of esophageal squamous cell carcinoma to neoadjuvant chemoradiation therapy. Surg Today. 2014;44:421–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ando N, Kato H, Igaki H, et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol. 2012;19:68–74.

    Article  PubMed  Google Scholar 

  5. Miyata H, Yoshioka A, Yamasaki M, et al. Tumor budding in tumor invasive front predicts prognosis and survival of patients with esophageal squamous cell carcinomas receiving neoadjuvant chemotherapy. Cancer. 2009;115:3324–34.

    Article  PubMed  Google Scholar 

  6. Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10:671–84.

    Article  PubMed  CAS  Google Scholar 

  7. Upadhyay M, Samal J, Kandpal M, Singh OV, Vivekanandan P. The Warburg effect: insights from the past decade. Pharmacol Ther. 2013;137:318–30.

    Article  PubMed  CAS  Google Scholar 

  8. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  PubMed  CAS  Google Scholar 

  9. Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell. 2013;49:388–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Elf SE, Chen J. Targeting glucose metabolism in patients with cancer. Cancer. 2014;120:774–80.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mazurek S. Pyruvate kinase type M2: a key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 2011;43:969–80.

    Article  PubMed  CAS  Google Scholar 

  13. Soga T. Cancer metabolism: key players in metabolic reprogramming. Cancer Sci. 2013;104:275–81.

    Article  PubMed  CAS  Google Scholar 

  14. Li Z, Yang P, Li Z. The multifaceted regulation and functions of PKM2 in tumor progression. Biochim Biophys Acta. 2014;1846:285–96.

    PubMed  CAS  Google Scholar 

  15. Gui DY, Lewis CA, Vander Heiden MG. Allosteric regulation of PKM2 allows cellular adaptation to different physiological states. Sci Signal. 2013;6:pe7.

    Article  PubMed  Google Scholar 

  16. Wong N, De Melo J, Tang D. PKM2, a central point of regulation in cancer metabolism. Int J Cell Biol. 2013;2013:242513.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15:300–8.

    Article  PubMed  CAS  Google Scholar 

  18. Christofk HR, Vander Heiden MG, Harris MH, et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumor growth. Nature. 2008;452:230–3.

    Article  PubMed  CAS  Google Scholar 

  19. Luo W, Semenza GL. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012;23:560–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lim JY, Yoon SO, Seol SY, et al. Overexpression of the M2 isoform of pyruvate kinase is an adverse prognostic factor for signet ring cell gastric cancer. World J Gastroenterol. 2012;18:4037–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Dhar DK, Olde Damink SW, Brindley JH, et al. Pyruvate kinase M2 is a novel diagnostic marker and predicts tumor progression in human biliary tract cancer. Cancer. 2013;119:575–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Yoo BC, Ku JL, Hong SH, et al. Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer. 2004;108:532–9.

    Article  PubMed  CAS  Google Scholar 

  23. Li SL, Ye F, Cai WJ, et al. Quantitative proteome analysis of multidrug resistance in human ovarian cancer cell line. J Cell Biochem. 2010;109:625–33.

    PubMed  CAS  Google Scholar 

  24. Guo W, Zhang Y, Chen T, et al. Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol. 2011;137:65–72.

    Article  PubMed  CAS  Google Scholar 

  25. Shi HS, Li D, Zhang J, et al. Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 2010;101:1447-53.

    Article  PubMed  CAS  Google Scholar 

  26. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  PubMed  CAS  Google Scholar 

  27. Teicher BA, Linehan WM, Helman LJ. Targeting cancer metabolism. Clin Cancer Res. 2012;18:5537–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. 2011;334:1278–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Tamada M, Suematsu M, Saya H. Pyruvate kinase M2: multiple faces for conferring benefits on cancer cells. Clin Cancer Res. 2012;18:5554–61.

    Article  PubMed  CAS  Google Scholar 

  30. Vander Heiden MG, Lunt SY, Dayton TL, et al. Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol. 2011;76:325–34.

    Article  PubMed  CAS  Google Scholar 

  31. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

    Article  PubMed  CAS  Google Scholar 

  32. Goldberg MS, Sharp PA. Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 2012;209:217–24.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5:592–602.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Bensinger SJ, Christofk HR. New aspects of the Warburg effect in cancer cell biology. Semin Cell Dev Biol. 2012;23:352–61.

    Article  PubMed  CAS  Google Scholar 

  36. Israelsen WJ, Dayton TL, Davidson SM, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell. 2013;155:397–409.

    Article  PubMed  CAS  Google Scholar 

  37. Anastasiou D, Yu Y, Israelsen WJ, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol. 2012;8:839–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Wolf A, Agnihotri S, Micallef J, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011;208:313–26.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Rong Y, Wu W, Ni X, et al. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol. 2013;34:1523–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

The authors declare no conflicts of interest or financial ties to disclose in relation to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Miyata MD, PhD.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukuda, S., Miyata, H., Miyazaki, Y. et al. Pyruvate Kinase M2 Modulates Esophageal Squamous Cell Carcinoma Chemotherapy Response by Regulating the Pentose Phosphate Pathway. Ann Surg Oncol 22 (Suppl 3), 1461–1468 (2015). https://doi.org/10.1245/s10434-015-4522-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-015-4522-3

Keywords

Navigation