Annals of Surgical Oncology

, Volume 21, Issue 3, pp 1024–1030 | Cite as

Src Family Kinase Inhibition as a Novel Strategy to Augment Melphalan-Based Regional Chemotherapy of Advanced Extremity Melanoma

  • Yoshihiro Tokuhisa
  • Michael E. Lidsky
  • Hiroaki Toshimitsu
  • Ryan S. Turley
  • Georgia M. Beasley
  • Tomio Ueno
  • Ketan Sharma
  • Christina K. Augustine
  • Douglas S. Tyler



Src kinase inhibition has been shown to augment the efficacy of chemotherapy. Dasatinib, a dual Src/Abl kinase inhibitor approved for the treatment of CML, is under investigation as monotherapy for tumors with abnormal Src signaling, such as melanoma. The goal of this study was to determine if Src kinase inhibition using dasatinib could enhance the efficacy of regionally administered melphalan in advanced extremity melanoma.


The mutational status of c-kit and patterns of gene expression predictive of dysregulated Src kinase signaling were evaluated in a panel of 26 human melanoma cell lines. The effectiveness of dasatinib was measured by quantifying protein expression and activation of Src kinase, focal adhesion kinase, and Crk-associated substrate (p130CAS), in conjunction with in vitro cell viability assays using seven melanoma cell lines. Utilizing a rat model of regional chemotherapy, we evaluated the effectiveness of systemic dasatinib in conjunction with regional melphalan against the human melanoma cell line, DM443, grown as a xenograft.


Only the WM3211 cell line harbored a c-kit mutation. Significant correlation was observed between Src-predicted dysregulation by gene expression and sensitivity to dasatinib in vitro. Tumor doubling time for DM443 xenografts treated with systemic dasatinib in combination with regional melphalan (44.8 days) was significantly longer (p = 0.007) than either dasatinib (21.3 days) or melphalan alone (24.7 days).


Systemic dasatinib prior to melphalan-based regional chemotherapy markedly improves the efficacy of this alkylating agent in this melanoma xenograft model. Validation of this concept should be considered in the context of a regional therapy clinical trial.


Melanoma Imatinib Focal Adhesion Kinase Dasatinib Melanoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Duke Melanoma Research Fund (D.S. Tyler), and a VA Merit Review Grant (D.S. Tyler).

Supplementary material

10434_2013_3387_MOESM1_ESM.docx (117 kb)
Supplementary material 1 (DOCX 116 kb)
10434_2013_3387_MOESM2_ESM.pptx (1.3 mb)
Supplementary material 2 (PPTX 1310 kb)
10434_2013_3387_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 14 kb)
10434_2013_3387_MOESM4_ESM.docx (21 kb)
Supplementary material 4 (DOCX 20 kb)


  1. 1.
    Montero JC, Seoane S, Ocana A, Pandiella A. Inhibition of SRC family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res. 2011;17(17):5546–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol. 2009;6(10):587–95.PubMedCrossRefGoogle Scholar
  3. 3.
    Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4(6):470–80.PubMedCrossRefGoogle Scholar
  4. 4.
    Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22(4):337–58.PubMedCrossRefGoogle Scholar
  5. 5.
    Jallal H, Valentino ML, Chen G, Boschelli F, Ali S, Rabbani SA. A Src/Abl kinase inhibitor, SKI-606, blocks breast cancer invasion, growth, and metastasis in vitro and in vivo. Cancer Res. 2007;67(4):1580–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Homsi J, Cubitt C, Daud A. The Src signaling pathway: a potential target in melanoma and other malignancies. Expert Opin Ther Targets. 2007;11(1):91–100.PubMedCrossRefGoogle Scholar
  7. 7.
    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res. 2004;10(7):2307–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Masaki T, Igarashi K, Tokuda M, et al. pp60c-src activation in lung adenocarcinoma. Eur J Cancer. 2003;39(10):1447–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Frame MC. Src in cancer: deregulation and consequences for cell behaviour. Biochim Biophys Acta. 2002;1602(2):114–30.PubMedGoogle Scholar
  10. 10.
    Aligayer H, Boyd DD, Heiss MM, Abdalla EK, Curley SA, Gallick GE. Activation of Src kinase in primary colorectal carcinoma: an indicator of poor clinical prognosis. Cancer. 2002;94(2):344–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Lombardo LJ, Lee FY, Chen P, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47(27):6658–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Kluger HM, Dudek AZ, McCann C, et al. A phase 2 trial of dasatinib in advanced melanoma. Cancer. 2011;117(10):2202–8.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim KB, Eton O, Davis DW, et al. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br J Cancer. 2008;99(5):734–40.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wyman K, Atkins MB, Prieto V, et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma: significant toxicity with no clinical efficacy. Cancer. 2006;106(9):2005–11.PubMedCrossRefGoogle Scholar
  16. 16.
    Ugurel S, Hildenbrand R, Zimpfer A, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005;92(8):1398–405.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Guo J, Si L, Kong Y, et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-kit mutation or amplification. J Clin Oncol. 2011;29(21):2904–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011;305(22):2327–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Brady MS, Brown K, Patel A, Fisher C, Marx W. A phase II trial of isolated limb infusion with melphalan and dactinomycin for regional melanoma and soft tissue sarcoma of the extremity. Ann Surg Oncol. 2006;13(8):1123–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Eggermont AM, Kirkwood JM. Re-evaluating the role of dacarbazine in metastatic melanoma: what have we learned in 30 years? Eur J Cancer. 2004;40(12):1825–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Lindner P, Doubrovsky A, Kam PC, Thompson JF. Prognostic factors after isolated limb infusion with cytotoxic agents for melanoma. Ann Surg Oncol. 2002;9(2):127–36.PubMedGoogle Scholar
  22. 22.
    Augustine CK, Jung SH, Sohn I, et al. Gene expression signatures as a guide to treatment strategies for in-transit metastatic melanoma. Mol Cancer Ther. 2010;9(4):779–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Augustine CK, Toshimitsu H, Jung SH, et al. Sorafenib, a multikinase inhibitor, enhances the response of melanoma to regional chemotherapy. Mol Cancer Ther. 2010;9(7):2090–101.PubMedCrossRefGoogle Scholar
  24. 24.
    Toshimitsu H, Yoshimoto Y, Augustine CK, et al. Inhibition of poly(ADP-ribose) polymerase enhances the effect of chemotherapy in an animal model of regional therapy for the treatment of advanced extremity malignant melanoma. Ann Surg Oncol. 2010;17(8):2247–54.PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshimoto Y, Augustine CK, Yoo JS, et al. Defining regional infusion treatment strategies for extremity melanoma: comparative analysis of melphalan and temozolomide as regional chemotherapeutic agents. Mol Cancer Ther. 2007;6(5):1492–500.PubMedCrossRefGoogle Scholar
  26. 26.
    Ueno T, Ko SH, Grubbs E, et al. Modulation of chemotherapy resistance in regional therapy: a novel therapeutic approach to advanced extremity melanoma using intra-arterial temozolomide in combination with systemic O6-benzylguanine. Mol Cancer Ther. 2006;5(3):732–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Woodman SE, Trent JC, Stemke-Hale K, et al. Activity of dasatinib against L576P KIT mutant melanoma: molecular, cellular, and clinical correlates. Mol Cancer Ther. 2009;8(8):2079–85.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Westhoff MA, Serrels B, Fincham VJ, Frame MC, Carragher NO. SRC-mediated phosphorylation of focal adhesion kinase couples actin and adhesion dynamics to survival signaling. Mol Cell Biol. 2004;24(18):8113–33.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Ueno T, Ko SH, Grubbs E, Pruitt SK, Friedman HS, Tyler DS. Temozolomide is a novel regional infusion agent for the treatment of advanced extremity melanoma. Am J Surg. 2004;188(5):532–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48):7906–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Algazi AP, Weber JS, Andrews SC, et al. Phase I clinical trial of the Src inhibitor dasatinib with dacarbazine in metastatic melanoma. Br J Cancer. 2011;106:85–91.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Woodman SE, Davies MA. Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol. 2010;80(5):568–74.PubMedCrossRefGoogle Scholar
  33. 33.
    Eustace AJ, Crown J, Clynes M, O’Donovan N. Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J Transl Med. 2008;6:53.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Homsi J, Cubitt CL, Zhang S, et al. Src activation in melanoma and Src inhibitors as therapeutic agents in melanoma. Melanoma Res. 2009;19(3):167–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Turley RS, Fontanella AN, Padussis JC, et al. Bevacizumab-induced alterations in vascular permeability and drug delivery: a novel approach to augment regional chemotherapy for in-transit melanoma. Clin Cancer Res. 2012;18(12):3328–39.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kilarski WW, Jura N, Gerwins P. Inactivation of Src family kinases inhibits angiogenesis in vivo: implications for a mechanism involving organization of the actin cytoskeleton. Exp Cell Res. 2003;291(1):70–82.PubMedCrossRefGoogle Scholar
  37. 37.
    Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell. 2007;18(12):5014–23.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Grossmann AH, Grossmann KF, Wallander ML. Molecular testing in malignant melanoma. Diagn Cytopathol. 2012;40(6):503–10.PubMedCrossRefGoogle Scholar
  39. 39.
    Hodi FS, Friedlander P, Corless CL, et al. Major response to imatinib mesylate in KIT-mutated melanoma. J Clin Oncol. 2008;26(12):2046–51.PubMedCrossRefGoogle Scholar
  40. 40.
    Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell. 1998;94(5):625–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Jilaveanu LB, Zito CR, Aziz SA, et al. In vitro studies of dasatinib, its targets and predictors of sensitivity. Pigment Cell Melanoma Res. 2011;24(2):386–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Beasley GM, Petersen RP, Yoo J, et al. Isolated limb infusion for in-transit malignant melanoma of the extremity: a well-tolerated but less effective alternative to hyperthermic isolated limb perfusion. Ann Surg Oncol. 2008;15(8):2195–205.PubMedCrossRefGoogle Scholar
  43. 43.
    Augustine CK, Yoshimoto Y, Gupta M, et al. Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res. 2008;68(10):3777–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Tentori L, Portarena I, Graziani G. Potential clinical applications of poly(ADP-ribose) polymerase (PARP) inhibitors. Pharmacol Res. 2002;45(2):73–85.PubMedCrossRefGoogle Scholar
  45. 45.
    Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002;54(3):375–429.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2013

Authors and Affiliations

  • Yoshihiro Tokuhisa
    • 1
    • 2
  • Michael E. Lidsky
    • 1
  • Hiroaki Toshimitsu
    • 1
    • 2
  • Ryan S. Turley
    • 1
  • Georgia M. Beasley
    • 1
  • Tomio Ueno
    • 3
  • Ketan Sharma
    • 1
  • Christina K. Augustine
    • 1
    • 2
  • Douglas S. Tyler
    • 1
    • 2
  1. 1.Department of SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of SurgeryDurham VA Medical CenterDurhamUSA
  3. 3.Department of Digestive Surgery and Surgical OncologyYamaguchi University School of MedicineYamaguchiJapan

Personalised recommendations