Annals of Surgical Oncology

, Volume 20, Issue 3, pp 946–955 | Cite as

Regulatory T Cell Infiltration Predicts Outcome Following Resection of Colorectal Cancer Liver Metastases

  • Steven C. Katz
  • Zubin M. Bamboat
  • Ajay V. Maker
  • Jinru Shia
  • Venu G. Pillarisetty
  • Adam C. Yopp
  • Cyrus V. Hedvat
  • Mithat Gonen
  • William R. Jarnagin
  • Yuman Fong
  • Michael I. D’Angelica
  • Ronald P. DeMatteo
Hepatobiliary Tumors

Abstract

Background

Tumor-infiltrating lymphocyte (TIL) counts in colorectal cancer liver metastases (CRCLM) predict survival following resection. While CD4 and CD8 T cells have been correlated with outcome following CRCLM resection, the role of regulatory T cells (Treg) is not well defined.

Methods

TIL in 188 patients who underwent CRCLM resection between 1998 and 2000 were analyzed by immunohistochemistry using tissue microarrays. Correlation between TIL composition and outcome was determined while controlling for established prognostic factors. Total T cells (CD3), helper T cells (CD4), cytotoxic T cells (CD8), and Treg (FoxP3) were analyzed.

Results

Median follow-up time was 40 months for all patients and 95 months for survivors. Overall survival (OS) at 5 and 10 years was 40 and 25 %, respectively. The CD4 T cell count correlated with OS (p = .02) and recurrence-free survival (p = .04). A high number of CD8 T cells relative to total T cells (CD8:CD3 ratio) predicted longer OS times (p = .05). Analysis of Treg revealed that high FoxP3:CD4 (p = .03) and FoxP3:CD8 (p = .05) ratios were independent predictors of shorter OS. Patients with a high clinical risk score (CRS) were more likely to have a high number of intratumoral Treg, and patients ≥65 years old had a less robust CRCLM T cell infiltration.

Conclusions

A high number of Treg relative to CD4 or CD8 T cells predicted poor outcome, suggesting an immunosuppressive role for FoxP3 + TIL. The intratumoral immune response was an independent predictor of outcome in patients with colorectal liver metastases.

Keywords

Overall Survival Irinotecan Oxaliplatin Effective Immune Response Clinical Risk Score 

References

  1. 1.
    Clemente CG, Mihm MC, Jr., Bufalino R, Zurrida S, Collini P, Cascinelli N. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77:1303–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Fu J, Xu D, Liu Z, Shi M, Zhao P, Fu B, et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology. 2007;132:2328–39.PubMedCrossRefGoogle Scholar
  3. 3.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. New Engl J Med. 2005;353:2654–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New Engl J Med. 2003;348:203–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Mlecnik B, Tosolini M, Kirilovsky A, Berger A, Bindea G, Meatchi T, et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29:610–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999;230:309–18 discussion 18–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Tomlinson JS, Jarnagin WR, DeMatteo RP, Fong Y, Kornprat P, Gonen M, et al. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol. 2007;25:4575–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Katz SC, Pillarisetty VG, Bleier JI, Kingham TP, Chaudhry UI, Shah AB, et al. Conventional liver CD4 T cells are functionally distinct and suppressed by environmental factors. Hepatology. 2005;42:293–300.PubMedCrossRefGoogle Scholar
  10. 10.
    Katz SC, Pillarisetty VG, Bleier JI, Shah AB, DeMatteo RP. Liver sinusoidal endothelial cells are insufficient to activate T cells. J Immunol. 2004;173:230–5.PubMedGoogle Scholar
  11. 11.
    Kingham TP, Chaudhry UI, Plitas G, Katz SC, Raab J, DeMatteo RP. Murine liver plasmacytoid dendritic cells become potent immunostimulatory cells after Flt-3 ligand expansion. Hepatology. 2007;45:445–54.PubMedCrossRefGoogle Scholar
  12. 12.
    Pillarisetty VG, Shah AB, Miller G, Bleier JI, DeMatteo RP. Liver dendritic cells are less immunogenic than spleen dendritic cells because of differences in subtype composition. J Immunol. 2004;172:1009–17.PubMedGoogle Scholar
  13. 13.
    Bamboat ZM, Stableford JA, Plitas G, Burt BM, Nguyen HM, Welles AP, et al. Human liver dendritic cells promote T cell hyporesponsiveness. J Immunol. 2009;182:1901–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Goubier A, Dubois B, Gheit H, Joubert G, Villard-Truc F, Asselin-Paturel C, et al. Plasmacytoid dendritic cells mediate oral tolerance. Immunity. 2008;29:464–75.PubMedCrossRefGoogle Scholar
  15. 15.
    Katz SC, Pillarisetty V, Bamboat ZM, Shia J, Hedvat C, Gonen M, et al. T cell infiltrate predicts long-term survival following resection of colorectal cancer liver metastases. Ann Surg Oncol. 2009;16:2524–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Katz SC, Donkor C, Glasgow K, Pillarisetty VG, Gönen M, Espat NJ, et al. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases. HPB (Oxford). 2010;12:674–83.CrossRefGoogle Scholar
  17. 17.
    Cohen T, Prus D, Shia J, Abu-Wasel B, Pinto MG, Freund HR, et al. Expression of P53, P27 and KI-67 in colorectal cancer patients of various ethnic origins: clinical and tissue microarray based analysis. J Surg Oncol. 2008;97:416–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller R, Siegmund D. Maximally selected chi square statistics. Biometrics. 1982;38:1011–6.CrossRefGoogle Scholar
  19. 19.
    House MG, Ito H, Gonen M, Allen PJ, DeMatteo RP, Brennan MF, et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. J Am Coll Surg. 2010;210:744–52, 752–5.Google Scholar
  20. 20.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8 +/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA. 2005;102:18538–43.PubMedCrossRefGoogle Scholar
  21. 21.
    Halama N, Michel S, Kloor M, Zoernig I, Benner A, Spille A, et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 2011;71:5670–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 2007;67:1883–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Wagner P, Koch M, Nummer D, Palm S, Galindo L, Autenrieth D, et al. Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol. 2008;15:2310–7. Erratum in: Ann Surg Oncol. 2009;16:1084. Rahbari, Nuh [added].Google Scholar
  24. 24.
    Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, et al. CD8 + T cell immunity against a tumor/self-antigen is augmented by CD4 + T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174:2591–601.PubMedGoogle Scholar
  25. 25.
    Liu WM, Fowler DW, Smith P, Dalgleish AG. Pre-treatment with chemotherapy can enhance the antigenicity and immunogenicity of tumours by promoting adaptive immune responses. Br J Cancer. 2010;102:115–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Ma Y, Aymeric L, Locher C, Mattarollo SR, Delahaye NF, Pereira P, et al. Contribution of IL-17-producing gamma delta T cells to the efficacy of anticancer chemotherapy. J Exp Med. 2011;208:491–503.PubMedCrossRefGoogle Scholar
  27. 27.
    Melichar B, Touskova M, Vesely P. Effect of irinotecan on the phenotype of peripheral blood leukocyte populations in patients with metastatic colorectal cancer. Hepatogastroenterology. 2002;49:967–70.PubMedGoogle Scholar
  28. 28.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.PubMedCrossRefGoogle Scholar
  29. 29.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.PubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res. 2007;13:902–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med. 2009;206:1103–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest. 2006;116:1935–45.PubMedCrossRefGoogle Scholar
  33. 33.
    Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.PubMedGoogle Scholar
  34. 34.
    Allan SE, Crome SQ, Crellin NK, Passerini L, Steiner TS, Bacchetta R, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol. 2007;19:345–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan ME, van Bilsen JH, Bakker AM, Heemskerk B, Schilham MW, Hartgers FC, et al. Expression of FOXP3 mRNA is not confined to CD4+ CD25+ T regulatory cells in humans. Hum Immunol. 2005;66:13–20.PubMedCrossRefGoogle Scholar
  36. 36.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl J Med. 2012;366:2455–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl J Med. 2012;366:2443–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl J Med. 2010;363:711–23.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2012

Authors and Affiliations

  • Steven C. Katz
    • 1
  • Zubin M. Bamboat
    • 1
  • Ajay V. Maker
    • 1
  • Jinru Shia
    • 2
  • Venu G. Pillarisetty
    • 1
  • Adam C. Yopp
    • 1
  • Cyrus V. Hedvat
    • 2
  • Mithat Gonen
    • 3
  • William R. Jarnagin
    • 1
  • Yuman Fong
    • 1
  • Michael I. D’Angelica
    • 1
  • Ronald P. DeMatteo
    • 1
  1. 1.Department of SurgeryMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  2. 2.Department of PathologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Department of BiostatisticsMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations