Skip to main content

Advertisement

Log in

Increased CD13 Expression Reduces Reactive Oxygen Species, Promoting Survival of Liver Cancer Stem Cells via an Epithelial–Mesenchymal Transition-like Phenomenon

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Recently, it has been reported that a small population of cancer stem cells (CSCs) play a role in resistance to chemotherapy and radiation therapy. We reported that CD13+ liver CSCs survive in hypoxic lesions after chemotherapy, presumably through increased expression of CD13/Aminopeptidase N, which is a scavenger enzyme in the reactive oxygen species (ROS) metabolic pathway. On the other hand, the concept of epithelial–mesenchymal transition (EMT) was indicated by a recent study showing an increased plasticity linked to the cellular “stemness” of CSCs.

Methods

To study the relationship between CSCs and EMT, we examined biological characteristics of liver cancer cell lines with EMT by exposing transforming growth factor-β (TGF-β).

Results

We showed that a TGF-β-induced EMT-like phenomenon is associated with increased CD13 expression in liver cancer cells. This phenomenon prevents further increases in the ROS level as well as the induction of apoptosis, promoting the survival of CD13+ CSCs, whereas inhibition of CD13 stimulates apoptosis. Immunohistochemical analysis also indicated that after chemotherapy, CD13 was coexpressed with N-cadherin in surviving cancer cells within fibrous capsules. We have demonstrated that CD13 expression plays a role in supporting the survival of CSCs and that there is an EMT-associated reduction in ROS elevation.

Conclusions

This novel and consistent linkage between functional CSC markers and the EMT phenomenon suggests a bona fide candidate for targeted therapy for EMT-mediated invasion and metastasis of liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sagar J, Chaib B, Sales K, Winslet M, Seifalian A. Role of stem cells in cancer therapy and cancer stem cells: a review. Cancer Cell Int. 2007;4:7–9.

    Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  PubMed  CAS  Google Scholar 

  3. Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Invest. 2006;86(12):1203–7.

    Article  PubMed  CAS  Google Scholar 

  4. Wulf GG, Wang RY, Kuehnle I, et al. A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood. 2001;98(4):1166–73.

    Article  PubMed  CAS  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  PubMed  CAS  Google Scholar 

  6. Bonnet D, Dick JE. Human acute leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  7. Piccirillo SG, Reynolds BA, Zanetti N, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.

    Article  PubMed  CAS  Google Scholar 

  8. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.

    Article  PubMed  CAS  Google Scholar 

  9. Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007;104(3):973–8.

    Article  PubMed  CAS  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  11. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.

    Article  PubMed  CAS  Google Scholar 

  12. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.

    Article  PubMed  Google Scholar 

  13. Haraguchi N, Utsunomiya T, Inoue H, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24(3):506–13.

    Article  PubMed  CAS  Google Scholar 

  14. Chiba T, Kita K, Zheng YW, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology. 2006;44(1):240–51.

    Article  PubMed  CAS  Google Scholar 

  15. Ding W, Mouzaki M, You H, et al. CD133 + liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology. 2009;49(4):1277–86.

    Article  PubMed  CAS  Google Scholar 

  16. Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu Z, Hao X, Yan M, et al. Cancer stem/progenitor cells are highly enriched in CD133(+)CD44(+) population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–78.

    PubMed  CAS  Google Scholar 

  18. Yang ZF, Ngai P, Ho DW, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008;47(3):919–28.

    Article  PubMed  CAS  Google Scholar 

  19. Yang ZF, Ho DW, Ng MN, et al. Significance of CD90 + cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66.

    Article  PubMed  CAS  Google Scholar 

  20. Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.

    Article  PubMed  CAS  Google Scholar 

  21. Haraguchi N, Ishii H, Mimori K, et al. CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 2010;120(9):3326–39.

    Article  PubMed  CAS  Google Scholar 

  22. Menrad A, Speicher D, Wacker J, Herlyn M. Biochemical and functional characterization of aminopeptidase N expressed by human melanoma cells. Cancer Res. 1993;53(6):1450–5.

    PubMed  CAS  Google Scholar 

  23. Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60(3):722–7.

    PubMed  CAS  Google Scholar 

  24. Mishima Y, Matsumoto-Mishima Y, Terui Y, et al. Leukemic cell-surface CD13/aminopeptidase N and resistance to apoptosis mediated by endothelial cells. J Natl Cancer Inst. 2002;94(13):1020–8.

    Article  PubMed  CAS  Google Scholar 

  25. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  PubMed  CAS  Google Scholar 

  26. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14(6):818–29.

    Article  PubMed  CAS  Google Scholar 

  27. Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.

    Article  PubMed  CAS  Google Scholar 

  28. Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25(4):695–705.

    Article  PubMed  CAS  Google Scholar 

  29. Radisky DC, Levy DD, Littlepage LE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436(7047):123–7.

    Article  PubMed  CAS  Google Scholar 

  30. Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC. In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res. 2006;66(19):9583–90.

    Article  PubMed  CAS  Google Scholar 

  31. Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004;431(7011):997–1002.

    Article  PubMed  CAS  Google Scholar 

  32. Ito K, Hirao A, Arai F, et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med. 2006;12(4):446–51.

    Article  PubMed  CAS  Google Scholar 

  33. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  PubMed  CAS  Google Scholar 

  34. Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26(7):611–23.

    Article  PubMed  CAS  Google Scholar 

  35. Klarmann GJ, Hurt EM, Mathews LA, et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis. 2009;26(5):433–46.

    Article  PubMed  CAS  Google Scholar 

  36. Wang Z, Li Y, Sarkar FH. Signaling mechanism(s) of reactive oxygen species in epithelial–mesenchymal transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther. 2010;5(1):74–80.

    Article  PubMed  Google Scholar 

  37. Mahoney KM, Petrovic N, Schacke W, Shapiro LH. CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene. 2007;403(1–2):178–87.

    Article  PubMed  CAS  Google Scholar 

  38. Nilsson CL, Dillon R, Devakumar A, et al. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signaling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res. 2010;9(1):430–43.

    Article  PubMed  CAS  Google Scholar 

  39. Kataoka K. Multiple mechanisms and functions of Maf transcription factors in the regulation of tissue-specific genes. J Biochem. 2007;141(6):775–81.

    Article  PubMed  CAS  Google Scholar 

  40. Cvekl A, Yang Y, Chauhan BK, Cveklova K. Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystalines in lens. Int J Dev Biol. 2004;48(8–9):829–44.

    Article  PubMed  CAS  Google Scholar 

  41. Hiramatsu Y, Suto A, Kashiwakuma D, et al. c-Maf activates the promoter and enhancer of the IL-21 gene, and TGF-b inhibits c-Maf-induced IL-21 production in CD4+T cells. J Leukoc Biol. 2010;87(4):703–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported in part by a grant from Core Research for Evolutional Science and Technology (CREST), a Grant-in-Aid for scientific research on Priority Areas (20012039), Grants-in-Aid for scientific research S (21229015) and C (20590313) from the Ministry of Education, Culture, Sports, Science, and Technology, and a grant from the Tokyo Biochemical Research Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideshi Ishii or Masaki Mori.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 253 kb)

Supplementary material 2 (TIFF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.M., Haraguchi, N., Ishii, H. et al. Increased CD13 Expression Reduces Reactive Oxygen Species, Promoting Survival of Liver Cancer Stem Cells via an Epithelial–Mesenchymal Transition-like Phenomenon. Ann Surg Oncol 19 (Suppl 3), 539–548 (2012). https://doi.org/10.1245/s10434-011-2040-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-2040-5

Keywords

Navigation