Skip to main content

Carbonic Anhydrase IX Overexpression is Associated with Diminished Prognosis in Esophageal Cancer and Correlates with Her-2 Expression



Carbonic anhydrase IX (CAIX), a transmembrane glycoprotein, seems to play a key role in the adaption of tumor cells to hypoxia. This study was designed to investigate the clinical role of CAIX and its association with Her-2 in a large cohort of adeno- (AC) and squamous cell carcinomas (SCC) of the esophagus and their metastases.


Expression of CAIX and Her-2 was investigated immunohistochemically in formalin fixed, paraffin-embedded tissue from 330 esophageal cancers (182 ACS, 148 SCCs). Corresponding lymph node metastases in 137 cases, distant metastases in 34 cases, and local recurrences in 14 cases were analyzed for CAIX expression.


A total of 147 cases (44.5%) showed strong CAIX expression (AC: 46.7%; ACC: 41.9%). CAIX status of the primary tumor influenced CAIX expression in corresponding lymph node metastases (P < 0.001, linear regression). High CAIX-expression was an independent prognostic factor for shorter overall and disease-free survival (P ≤ 0.05, Cox regression). Twenty-nine ACs (15.9%) and 6 SCCs (4.1%) showed Her-2 overexpression. In AC, a significant positive correlation between the Her-2 status and CAIX expression was found (P = 0.009, chi-square test).


High CAIX expression is associated with shorter survival in esophageal cancer, and the hypoxic phenotype seems to be preserved at least during formation of lymph node metastases. Inhibition of CAIX might reduce the ability of tumor cells to establish disseminated disease. In Her-2 overexpressing ACs, blocking of this tyrosine kinase, e.g., by monoclonal antibodies, might induce this effect.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Ku GY, Ilson DH. Esophagogastric cancer: targeted agents. Cancer Treat Rev. 2010;36:235–48.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Blancher C, Harris AL. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev. 1998;17:187–94.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Alterio V, Hilvo M, Di Fiore A, et al. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A. 2009;106:16233–8.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Opavsky R, Pastorekova S, Zelnik V, et al. Human MN/CA9 gene, a novel member of the carbonic anhydrase family: structure and exon to protein domain relationships. Genomics. 1996;33:480–7.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168–81.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Paul SA, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol. 2004;200:20–30.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    McKiernan JM, Buttyan R, Bander NH, et al. Expression of the tumor-associated gene MN: a potential biomarker for human renal cell carcinoma. Cancer Res. 1997;57:2362–5.

    PubMed  CAS  Google Scholar 

  8. 8.

    Vermylen P, Roufosse C, Burny A, et al. Carbonic anhydrase IX antigen differentiates between preneoplastic malignant lesions in non-small cell lung carcinoma. Eur Respir J. 1999;14:806–11.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Liao SY, Brewer C, Zavada J, et al. Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas. Am J Pathol. 1994;145:598–609.

    PubMed  CAS  Google Scholar 

  10. 10.

    Pastorek J, Pastorekova S, Callebaut I, et al. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9:2877–88.

    PubMed  CAS  Google Scholar 

  11. 11.

    Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77:400–10.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Dragowska WH, Warburton C, Yapp DT, et al. HER-2/neu overexpression increases the viable hypoxic cell population within solid tumors without causing changes in tumor vascularization. Mol Cancer Res. 2004;2:606–19.

    PubMed  CAS  Google Scholar 

  13. 13.

    Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21:3995–4004.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Li YM, Zhou BP, Deng J, Pan Y, Hay N, Hung MC. A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells. Cancer Res. 2005;65:3257–63.

    PubMed  CAS  Google Scholar 

  15. 15.

    Hardee ME, Dewhirst MW, Agarwal N, Sorg BS. Novel imaging provides new insights into mechanisms of oxygen transport in tumors. Curr Mol Med. 2009;9:435–41.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Hardee ME, Eapen RJ, Rabbani ZN, Dreher MR, Marks J, Blackwell KL, Dewhirst MW. Her2/neu signaling blockade improves tumor oxygenation in a multifactorial fashion in Her2/neu+ tumors. Cancer Chemother Pharmacol. 2009;63:219–28.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Tanaka N, Kato H, Inose T, et al. Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma. Br J Cancer. 2008;99:1468–75.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Driessen A, Landuyt W, Pastorekova S, et al. Expression of carbonic anhydrase IX (CA IX), a hypoxia-related protein, rather than vascular-endothelial growth factor (VEGF), a pro-angiogenic factor, correlates with an extremely poor prognosis in esophageal and gastric adenocarcinomas. Ann Surg. 2006;243:334–40.

    PubMed  Article  Google Scholar 

  19. 19.

    Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797–805.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Olive PL, Aquino-Parsons C, MacPhail SH, Liao SY, Raleigh JA, Lerman MI, Stanbridge EJ. Carbonic anhydrase 9 as an endogenous marker for hypoxic cells in cervical cancer. Cancer Res. 2001;61:8924–9.

    PubMed  CAS  Google Scholar 

  21. 21.

    Wykoff CC, Beasley NJ, Watson PH, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.

    PubMed  CAS  Google Scholar 

  22. 22.

    Kato Y, Yashiro M, Noda S, et al. Expression of a hypoxia-associated protein, carbonic anhydrase-9, correlates with malignant phenotypes of gastric carcinoma. Digestion. 82:246–51.

  23. 23.

    Hutchison GJ, Valentine HR, Loncaster JA, et al. Hypoxia-inducible factor 1alpha expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clin Cancer Res. 2004;10:8405–12.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Nordsmark M, Eriksen JG, Gebski V, Alsner J, Horsman MR, Overgaard J. Differential risk assessments from five hypoxia specific assays: The basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol. 2007;83:389–97.

    PubMed  Article  Google Scholar 

  25. 25.

    Korkolopoulou P, Patsouris E, Konstantinidou AE, et al. Hypoxia-inducible factor 1alpha/vascular endothelial growth factor axis in astrocytomas. Associations with microvessel morphometry, proliferation and prognosis. Neuropathol Appl Neurobiol. 2004;30:267–78.

    CAS  Google Scholar 

  26. 26.

    Winter SC, Shah KA, Han C, et al. The relation between hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression with anemia and outcome in surgically treated head and neck cancer. Cancer. 2006;107:757–66.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Kappler M, Taubert H, Holzhausen HJ, et al. Immunohistochemical detection of HIF-1alpha and CAIX in advanced head-and-neck cancer. Prognostic role and correlation with tumor markers and tumor oxygenation parameters. Strahlenther Onkol. 2008;184:393–9.

    PubMed  Article  Google Scholar 

  28. 28.

    Jewell UR, Kvietikova I, Scheid A, Bauer C, Wenger RH, Gassmann M. Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 2001;15:1312–4.

    PubMed  CAS  Google Scholar 

  29. 29.

    Vordermark D, Brown JM. Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol. 2003;179:801–11.

    PubMed  Article  Google Scholar 

  30. 30.

    Mayer A, Hockel M, Vaupel P. Endogenous hypoxia markers: case not proven! Adv Exp Med Biol. 2008;614:127–36.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Giatromanolaki A, Koukourakis MI, Sivridis E, Pastorek J, Wykoff CC, Gatter KC, Harris AL. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Res. 2001;61:7992–8.

    PubMed  CAS  Google Scholar 

  32. 32.

    Bartosova M, Parkkila S, Pohlodek K, et al. Expression of carbonic anhydrase IX in breast is associated with malignant tissues and is related to overexpression of c-erbB2. J Pathol. 2002;197:314–21.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B, Kerbel RS. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol. 1997;151:1523–30.

    PubMed  CAS  Google Scholar 

  34. 34.

    Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, Pastorek J. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112:398–408.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Rajaganeshan R, Prasad R, Guillou PJ, Scott N, Poston G, Jayne DG. Expression patterns of hypoxic markers at the invasive margin of colorectal cancers and liver metastases. Eur J Surg Oncol. 2009;35:1286–94.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Hill R, Wu H. PTEN, stem cells, and cancer stem cells. J Biol Chem. 2009;284:11755–9.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Ebbesen P, Pettersen EO, Gorr TA, et al. Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem. 2009;24(Suppl 1):1–39.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Cianchi F, Vinci MC, Supuran CT, et al. Selective inhibition of carbonic anhydrase IX decreases cell proliferation and induces ceramide-mediated apoptosis in human cancer cells. J Pharmacol Exp Ther. 2010;334:710–9.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochim Biophys Acta. 2010;1804:404–9.

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sebastian F. Schoppmann MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Birner, P., Jesch, B., Friedrich, J. et al. Carbonic Anhydrase IX Overexpression is Associated with Diminished Prognosis in Esophageal Cancer and Correlates with Her-2 Expression. Ann Surg Oncol 18, 3330 (2011).

Download citation


  • Squamous Cell Carcinoma
  • Esophageal Cancer
  • Correspond Lymph Node
  • CAIX Expression
  • Local Lymph Node Metastasis