Skip to main content

Advertisement

Log in

Expression of P-aPKC-ι, E-Cadherin, and β-Catenin Related to Invasion and Metastasis in Hepatocellular Carcinoma

  • Hepatobiliary and Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Objectives

Atypical protein kinase C iota (aPKC-ι) and its associated intracellular molecules, E-cadherin and β-catenin, are important for cell polarization in tumorigenesis and progression. Expression of aPKC-ι, P-aPKC-ι (activated aPKC-ι), E-cadherin, and β-catenin in hepatocellular carcinoma (HCC) was measured, and correlation with clinicopathological characteristics of HCC was analyzed.

Methods

Paraffin-embedded tumor tissue was obtained from patients with HCC after resection without preoperative radiotherapy or chemotherapy. Gene expression was detected by polymerase chain reaction (PCR), and protein expression was detected by immunohistochemistry and Western blot analysis. Expressions of aPKC-ι, P-aPKC-ι, E-cadherin, and β-catenin were analyzed with relation to the clinicopathological data.

Results

The gene and protein expression of aPKC-ι are obviously higher in HCC tissues than that in peritumoral tissues and normal tissues by semiquantitative PCR and immunohistochemistry methods. Accumulation of aPKC-ι in HCC cytoplasm and nucleolus inhibited the later formation of belt-like adherens junctions (AJs) and/or tight junctions (TJs) in cell–cell contact. E-cadherin was reduced and accumulation of cytoplasm β-catenin was increased in HCC. The expression of aPKC-ι was closely related to pathological differentiation, tumor size, invasion, and metastasis of HCC.

Conclusion

Accumulation of cytoplasm aPKC-ι may reflect pathological differentiation, invasion, and metastasis potential of HCC. In this regard, our study on HCC revealed the potential usefulness of aPKC-ι, E-cadherin, and β-catenin as a prognostic marker, closely related to pathological differentiation, invasion, metastasis, and prognosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suzuki A, Akimoto K, Ohno S. Protein kinase C lambda/iota (PKClambda/iota): a PKC isotype essential for the development of multicellular organisms. J Biochem. 2003;133(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  2. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17(5):548–58.

    Article  PubMed  CAS  Google Scholar 

  3. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2(2):91–100.

    Article  PubMed  Google Scholar 

  4. Knapp LT, Klann E. Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content. J Biol Chem. 2000;275(31):24136–45.

    Article  PubMed  CAS  Google Scholar 

  5. Roberson ED, English JD, Sweatt JD. A biochemist’s view of long-term potentiation. Learning & memory. Cold Spring Harbor: NY; 1996. 3(1), p 1-24.

  6. Ashida N, Ueyama T, Rikitake K, et al. Ca(2+) oscillation induced by P2Y2 receptor activation and its regulation by a neuron-specific subtype of PKC (gammaPKC). Neurosci Lett. 2008;446(2–3):123–8.

    Google Scholar 

  7. Eder AM, Sui X, Rosen DG, et al. Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA. 2005;102(35):12519–24.

    Article  PubMed  CAS  Google Scholar 

  8. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP. Atypical protein kinase C iota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem. 2005;280(35):31109–15.

    Article  PubMed  CAS  Google Scholar 

  9. Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development (Cambridge, England). 1998;125(18):3607–14.

    CAS  Google Scholar 

  10. Hart IR, Saini A. Biology of tumour metastasis. Lancet. 1992;339(8807):1453–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ikeguchi M, Makino M, Kaibara N. Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. J Surg Oncol. 2001;77(3):201–7.

    Article  PubMed  CAS  Google Scholar 

  12. Ranscht B. Cadherins and catenins: interactions and functions in embryonic development. Curr Opin Cell Biol. 1994;6(5):740–6.

    Article  PubMed  CAS  Google Scholar 

  13. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.

    Article  PubMed  CAS  Google Scholar 

  14. Sillem M, Hahn U, 3rd CC, Gordon K, Runnebaum B, Hodgen G. Ectopic growth of endometrium depends on its structural integrity and proteolytic activity in the cynomolgus monkey (Macaca fascicularis) model of endometriosis. Fertil Steril. 1998;66(3):468–73.

    Google Scholar 

  15. Hira E, Ono T, Dhar DK, et al. Overexpression of macrophage migration inhibitory factor induces angiogenesis and deteriorates prognosis after radical resection for hepatocellular carcinoma. Cancer. 2005;103(3):588–98.

    Article  PubMed  CAS  Google Scholar 

  16. Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol. 1998;274(1 Pt 2):F1–9.

    PubMed  CAS  Google Scholar 

  17. Yeaman C, Grindstaff KK, Nelson WJ. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev. 1999;79(1):73–98.

    PubMed  CAS  Google Scholar 

  18. Ando-Akatsuka Y, Yonemura S, Itoh M, Furuse M, Tsukita S. Differential behavior of E-cadherin and occludin in their colocalization with ZO-1 during the establishment of epithelial cell polarity. J Cell Physiol. 1999;179(2):115–25.

    Article  PubMed  CAS  Google Scholar 

  19. Yonemura S, Itoh M, Nagafuchi A, Tsukita S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J Cell Sci. 1995;108(Pt 1):127–42.

    PubMed  CAS  Google Scholar 

  20. Vasioukhin V, Bauer C, Yin M, Fuchs E. Directed actin polymerization is the driving force for epithelial cell–cell adhesion. Cell. 2000;100(2):209–19.

    Article  PubMed  CAS  Google Scholar 

  21. Wijnhoven BP, Dinjens WN, Pignatelli M. E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg. 2000;87(8):992–1005.

    Article  PubMed  CAS  Google Scholar 

  22. Shiozaki H, Oka H, Inoue M, Tamura S, Monden M. E-cadherin mediated adhesion system in cancer cells. Cancer. 1996;77(8 Suppl):1605–13.

    PubMed  CAS  Google Scholar 

  23. Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature. 1998;392(6672):190–3.

    Article  PubMed  CAS  Google Scholar 

  24. Wijnhoven BP, Pignatelli M, Dinjens WN, Tilanus HW. Reduced p120ctn expression correlates with poor survival in patients with adenocarcinoma of the gastroesophageal junction. J Surg Oncol. 2005;92(2):116–23.

    Article  PubMed  CAS  Google Scholar 

  25. Saha B, Kaur P, Tsao-Wei D, et al. Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate. 2008;68(15):1681–8.

    Article  PubMed  CAS  Google Scholar 

  26. Chetty R, Serra S, Asa SL. Loss of membrane localization and aberrant nuclear E-cadherin expression correlates with invasion in pancreatic endocrine tumors. Am J Surg Pathol. 2008;32(3):413–9.

    Article  PubMed  Google Scholar 

  27. Esufali S, Charames GS, Pethe VV, Buongiorno P, Bapat B. Activation of tumor-specific splice variant Rac1b by dishevelled promotes canonical Wnt signaling and decreased adhesion of colorectal cancer cells. Cancer Res. 2007;67(6):2469–79.

    Article  PubMed  CAS  Google Scholar 

  28. Totong R, Achilleos A, Nance J. PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development (Cambridge, England). 2007;134(7):1259–68.

    CAS  Google Scholar 

  29. Suzuki A, Hirata M, Kamimura K, et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol. 2004;14(16):1425–35.

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki A, Ishiyama C, Hashiba K, Shimizu M, Ebnet K, Ohno S. aPKC kinase activity is required for the asymmetric differentiation of the premature junctional complex during epithelial cell polarization. J Cell Sci. 2002;115(Pt 18):3565–73.

    Article  PubMed  CAS  Google Scholar 

  31. Ohno S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol. 2001;13(5):641–8.

    Article  PubMed  CAS  Google Scholar 

  32. Gotta M, Abraham MC, Ahringer J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol. 2001;11(7):482–8.

    Article  PubMed  CAS  Google Scholar 

  33. Kay AJ, Hunter CP. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr Biol 2001;11(7):474–81.

    Article  PubMed  CAS  Google Scholar 

  34. Etienne-Manneville S, Hall A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell. 2001;106(4):489–98.

    Article  PubMed  CAS  Google Scholar 

  35. Etienne-Manneville S, Hall A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature. 2003;421(6924):753–6.

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Yuan H, Weaver CD, et al. Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO J. 1999;18(15):4233–40.

    Article  PubMed  CAS  Google Scholar 

  37. Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science. 2002;296(5573):1644–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by grant no. 30672040 to Professor Jianming Wang, M.D. from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ming Wang MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, GS., Wang, JM., Lu, JX. et al. Expression of P-aPKC-ι, E-Cadherin, and β-Catenin Related to Invasion and Metastasis in Hepatocellular Carcinoma. Ann Surg Oncol 16, 1578–1586 (2009). https://doi.org/10.1245/s10434-009-0423-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0423-7

Keywords

Navigation