Skip to main content

Advertisement

Log in

Tumor-Associated Lymphangiogenesis Correlates with Prognosis after Resection of Human Hepatocellular Carcinoma

  • Hepatobiliary and Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Experimental results from animal models as well as studies of human cancers indicate a critical role for tumor-associated lymphangiogenesis in tumor progression. However, its significance in hepatocellular carcinoma (HCC) is not well established.

Methods

We analyzed tissue specimens from healthy liver (n = 36), cirrhotic liver (n = 24), and HCC (n = 60) by immunohistochemistry, using antibody D2-40 specific for lymphendothelia. We subsequently quantified lymphatic microvessel density (LVD). The LVD was correlated with clinicopathological characteristics of the tumors as well as survival and disease-free survival of the patients.

Results

In contrast to healthy as well as cirrhotic liver, lymphangiogenesis was induced in HCC. Lymphatic vessels were detected in the intratumoral septa as well as within the bulk of tumor cells. Tumors with high LVD (24 of 60) had developed significantly more frequently in cirrhotic livers (P = 0.001) and were more frequently restricted to one liver lobe (P = 0.04). Univariate analysis revealed high LVD as a marker for reduced survival and disease-free survival disadvantage (median >60 vs. 21 months, P = 0.018, and 19 vs. 8 months, P = 0.047, respectively). In multivariate analysis, LVD showed a trend toward association with reduced survival (P = 0.059) and represented an independent prognostic factor for disease-free survival (P = 0.017).

Conclusions

Tumor-associated lymphangiogenesis is involved in neovascularization of hepatocellular carcinoma. Quantitative analysis of LVD demonstrated a significant influence of lymphangiogenesis on survival and established LVD as an independent predictor of disease-free survival. Quantification of LVD may be helpful in identifying patients with a high risk of tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Med 2001;7:186–91.

    Article  PubMed  CAS  Google Scholar 

  2. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med. 2001;7:192–8.

    Article  PubMed  CAS  Google Scholar 

  3. Duff SE, Li C, Jeziorska M, Kumar S, Saunders MP, Sherlock D, O’Dwyer ST, et al. Vascular endothelial growth factors C and D and lymphangiogenesis in gastrointestinal tract malignancy. Br J Cancer. 2003;89:426–30.

    Article  PubMed  CAS  Google Scholar 

  4. van Iterson V, Leidenius M, von Smitten K, Bono P, Heikkilä P. VEGF-D in Association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer. Am J Clin Pathol. 2007;128:759–66.

    Article  PubMed  Google Scholar 

  5. Choi WW, Lewis MM, Lawson D, Yin-Goen Q, Birdsong GG, Consonis GA, et al. Angiogenic and lymphangiogenic microvessel density in breast carcinoma: correlation with clinicopathologic parameters and VEGF-family gene expression. Mod Pathol. 2005;18:143–52.

    Article  PubMed  CAS  Google Scholar 

  6. Renyi-Vamos F, Tovari J, Fillinger J, Timar J, Paku S, Kenessey I, et al. Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res. 2005;11:7344–53.

    Article  PubMed  CAS  Google Scholar 

  7. Franchi A, Gallo O, Massi D, Baroni G, Santucci M. Tumor lymphangiogenesis in head and neck squamous cell carcinoma: a morphometric study with clinical correlations. Cancer. 2004;101:973–8.

    Article  PubMed  Google Scholar 

  8. Zeng Y, Opeskin K, Horvath LG, Sutherland RL, Williams ED. Lymphatic vessel density and lymph node metastasis in prostate cancer. Prostate. 2005;65:222–30.

    Article  PubMed  CAS  Google Scholar 

  9. Matsumoto K, Nakayama Y, Inoue Y, Minagawa N, Katsuki T, Shibao K, et al. Lymphatic microvessel density is an independent prognostic factor in colorectal cancer. Dis Colon Rectum. 2007;50:308–14.

    Article  PubMed  Google Scholar 

  10. Yu AS, Keeffe EB. Management of Hepatocellular carcinoma. Rev Gastroenterol Disord. 2003;3:8–24.

    PubMed  CAS  Google Scholar 

  11. Ribatti D, Vacca A, Nico B, Sansonno D, Dammacco F. Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treat Rev. 2006;32:437–44.

    Article  PubMed  CAS  Google Scholar 

  12. Mouta Carreira C, Nasser SM, di Tomaso E, Padera TP, Boucher Y, Tomarev SI, et al. LYVE-1 is not restricted to the lymph vessels: expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 2001;61:8079–84.

    PubMed  CAS  Google Scholar 

  13. Marks A, Sutherland DR, Bailey D, Iglesias J, Law J, Lei M, et al. Characterisation and distribution of an oncofetal antigen (M2A antigen) expressed on testicular germ cell tumours. Br J Cancer. 1999;80:569–78.

    Article  PubMed  CAS  Google Scholar 

  14. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 2005;166:913–21.

    PubMed  CAS  Google Scholar 

  15. Kahn HJ, Bauley D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol. 2002;15:434–40.

    Article  PubMed  Google Scholar 

  16. Soares AB, Ponchio L, Juliano PB, de Araújo VC, Altemani A. Lymphatic vascular density and lymphangiogenesis during tumour progression of carcinoma ex pleomorphic adenoma. J Clin Pathol. 2007;60:995–1000.

    Article  PubMed  CAS  Google Scholar 

  17. Yonemura Y, Endou Y, Tabachi K, Kawamura T, Yun HY, Kameya T, et al. Evaluation of lymphatic invasion in primary gastric cancer by a new monoclonal antibody, D2-40. Hum Pathol. 2006;37:1193–9.

    Article  PubMed  CAS  Google Scholar 

  18. Miyata Y, Kanda S, Ohba K, Nomata K, Hayashida Y, Eguchi J, et al. Lymphangiogenesis and angiogenesis in bladder cancer: prognostic implications and regulation by vascular endothelial growth factors-A, -C, and -D. Clin Cancer Res. 2006;12:800–6.

    Article  PubMed  CAS  Google Scholar 

  19. Gombos Z, Xu X, Chu CS, Zhang PJ, Acs G. Peritumoral lymphatic vessel density and vascular endothelial growth factor C expression in early-stage squamous cell carcinoma of the uterine cervix. Clin Cancer Res. 2005;11:8364–71.

    Article  PubMed  CAS  Google Scholar 

  20. Wittekind C, Sobin LH. TNM classification of malignant tumors. 6th ed. New York: Springer, 2002.

  21. Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis. 2005;25:181–200.

    Article  PubMed  Google Scholar 

  22. Llovet JM. Updated treatment approach to hepatocellular carcinoma. J Gastroenterol. 2005;40:225–35.

    Article  PubMed  Google Scholar 

  23. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell. 2002;1:219–27.

    Article  PubMed  CAS  Google Scholar 

  24. Thelen A, Scholz A, Benckert C, von Marschall Z, Schröder M, Wiedenmann B, et al. VEGF-D promotes tumor growth and lymphatic spread in a mouse model of hepatocellular carcinoma. Int J Cancer. 2008;122:2471–81.

    Article  PubMed  CAS  Google Scholar 

  25. Thelen A, Scholz A, Benckert C, Weichert W, Dietz E, Wiedenmann B, et al. Tumor-associated lymphangiogenesis correlates with lymph node metastases and prognosis in hilar cholangiocarcinoma. Ann Surg Oncol. 2008;15:791–9.

    Article  PubMed  Google Scholar 

  26. Kooby DA, Jarnagin WR. Surgical management of hepatic malignancy. Cancer Invest. 2004;22:283–303.

    Article  PubMed  Google Scholar 

  27. Golling M, Bechstein W. Surgical resection of colorectal liver metastases—the current standard therapy. Rozhl Chir. 2006;85:381–9.

    PubMed  CAS  Google Scholar 

  28. Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, et al. Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg. 2001;234:63–70.

    Article  PubMed  CAS  Google Scholar 

  29. Ercolani G, Grazi GL, Ravaioli M, Del Gaudio M, Gardini A, Cescon M, et al. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg. 2003;237:536–43.

    Article  PubMed  Google Scholar 

  30. Itamoto T, Nakahara H, Amano H, Kohashi T, Ohdan H, Tashiro H, et al. Repeat hepatectomy for recurrent hepatocellular carcinoma. Surgery. 2007;141:589–97.

    Article  PubMed  Google Scholar 

  31. Minagawa M, Makuuchi M, Takayama T, Kokudo N. Selection criteria for repeat hepatectomy in patients with recurrent hepatocellular carcinoma. Ann Surg. 2003;238:703–10.

    Article  PubMed  Google Scholar 

  32. Abou-Alfa GK, Schwartz L, Ricci S, Amadori D, Santoro A, Figer A, et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol. 2006;24:4293–300.

    Article  PubMed  CAS  Google Scholar 

  33. He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94:819–25.

    PubMed  CAS  Google Scholar 

  34. Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst. 2005;97:14–21.

    Article  PubMed  CAS  Google Scholar 

  35. Ahmed SI, Thomas AL, Steward WP. Vascular endothelial growth factor (VEGF) inhibition by small molecules. J Chemother. 2004;16:59–63.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

A.S. was supported by a grant from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Thelen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thelen, A., Jonas, S., Benckert, C. et al. Tumor-Associated Lymphangiogenesis Correlates with Prognosis after Resection of Human Hepatocellular Carcinoma. Ann Surg Oncol 16, 1222–1230 (2009). https://doi.org/10.1245/s10434-009-0380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0380-1

Keywords

Navigation