Annals of Surgical Oncology

, Volume 16, Issue 4, pp 878–886 | Cite as

Response to Preoperative Therapy in Upper Gastrointestinal Cancers

  • Björn L. D. M. Brücher
  • Stephen G. Swisher
  • Alfred Königsrainer
  • Derek Zieker
  • Jörg Hartmann
  • Hubert Stein
  • Yuko Kitagawa
  • Simon Law
  • Jaffer A. Ajani
Gastrointestinal Oncology

Abstract

Background

In cancer, a response to therapy implies a reduction in the volume or activity of localized and/or metastatic tumors. In localized upper gastrointestinal cancer, there is no accepted definition of clinical response; however, tumor shrinkage is frequently observed when preoperative therapy is administered. As patients with upper gastrointestinal cancers often undergo multimodal therapy, it is therefore imperative that new definitions for assessing the response to preoperative therapy be established.

Methods

We reviewed the development of response criteria from a historical perspective, with particular emphasis on the criteria used to assess upper gastrointestinal cancers.

Results

Observing the response to preoperative therapy appears to make it possible to distinguish between favorable and unfavorable clinical biology in the cancer. Patients who experience a response to preoperative treatment appear to fare better in terms of overall survival than those whose cancers do not respond. We reviewed the published results regarding the response to preoperative therapy and the implications of this for patients.

Conclusions

This review of the literature suggests that a variety of tools are available for defining the response to preoperative therapy and that these need to be exploited. Developing reliable methods of assessing the response will improve the individualization of therapy for patients with gastroesophageal cancer. There is a strong need for surrogate markers for efficacy in order to assess responses that are capable of predicting patient outcome.

Keywords

Positron Emission Tomography Esophageal Cancer Esophageal Squamous Cell Carcinoma Esophageal Adenocarcinoma Ataxia Telangiectasia Mutate 

Notes

Acknowledgments

The authors are very grateful for the critical advice on this paper provided by Prof. Murray Brennan of the Memorial Sloan-Kettering Cancer Center, New York City, NY, USA. This manuscript is dedicated to U. Fink, emeritus professor of oncology, who had a major impact on response assessment in oncology during the last 20 years and J. R. Siewert, emeritus professor of surgery, who had a major impact on response assessment as well as on esophageal surgery generally within the last 25 years.

References

  1. 1.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Blot WJ, McLaughlin JK. The changing epidemiology of esophageal cancer. Semin Oncol. 1999;26(5 Suppl 15):2–8.PubMedGoogle Scholar
  3. 3.
    van Blankenstein M, Looman CW, Hop WC, Bytzer P. The incidence of adenocarcinoma and squamous cell carcinoma of the esophagus: Barrett’s esophagus makes a difference. Am J Gastroenterol. 2005;100(4):766–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J Natl Cancer Inst. 2005;97(2):142–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Hulscher JB, van Sandick JW, de Boer AG, Wijnhoven BP, Tijssen JG, Fockens P, et al. Extended transthoracic resection compared with limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med. 2002;347(21):1662–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Brücher BLDM, Stein HJ, Werner M, Siewert JR. Lymphatic vessel invasion is an independent prognostic factor in patients with a primary resected tumor with esophageal squamous cell carcinoma. Cancer. 2001;92(8):2228–33.PubMedCrossRefGoogle Scholar
  7. 7.
    Stein HJ, von Rahden BH, Siewert JR. Survival after oesophagectomy for cancer of the oesophagus. Langenbecks Arch Surg. 2005;390(4):280–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Jin J, Liao Z, Zhang Z, Ajani J, Swisher S, Chang JY, et al. Induction chemotherapy improved outcomes of patients with resectable esophageal cancer who received chemoradiotherapy followed by surgery. Int J Radiat Oncol Biol Phys. 2004;60(2):427–36.PubMedGoogle Scholar
  9. 9.
    Ilson DH. Oesophageal cancer: new developments in systemic therapy. Cancer Treat Rev. 2003;29(6):525–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Greil R, Stein HJ. Is it time to consider neoadjuvant treatment as the standard of care in oesophageal cancer? Lancet Oncol. 2007;8(3):189–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Stahl M, Stuschke M, Lehmann N, Meyer HJ, Walz MK, Seeber S et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23(10):2310–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Bosset JF, Gignoux M, Triboulet JP, Tiret E, Mantion G, Elias D et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med. 1997;337(3):161–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Burmeister BH, Smithers BM, Gebski V, Fitzgerald L, Simes RJ, Devitt P et al. Surgery alone versus chemoradiotherapy followed by surgery for resectable cancer of the oesophagus: a randomised controlled phase III trial. Lancet Oncol. 2005;6(9):659–68.PubMedCrossRefGoogle Scholar
  14. 14.
    Le Prise E, Etienne PL, Meunier B, Maddern G, Ben Hassel M, Gedouin D et al. A randomized study of chemotherapy, radiation therapy, and surgery versus surgery for localized squamous cell carcinoma of the esophagus. Cancer. 1994;73(7):1779–84.PubMedCrossRefGoogle Scholar
  15. 15.
    Nygaard K, Hagen S, Hansen HS, Hatlevoll R, Hultborn R, Jakobsen A et al. Pre-operative radiotherapy prolongs survival in operable esophageal carcinoma: a randomized, multicenter study of pre-operative radiotherapy and chemotherapy The second Scandinavian trial in esophageal cancer. World J Surg. 1992;16(6):1104–9 (discussion 1110).PubMedCrossRefGoogle Scholar
  16. 16.
    Urba SG, Orringer MB, Turrisi A, Iannettoni M, Forastiere A, Strawderman M Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol. 2001;19(2):305–13.PubMedGoogle Scholar
  17. 17.
    Walsh TN, Noonan N, Hollywood D, Kelly A, Keeling N, Hennessy TP. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med. 1996;335(7):462–7 (see comments) (published erratum appears in N Engl J Med. 1999 Jul 29;341(5):384).Google Scholar
  18. 18.
    Kelsen DP, Ginsberg R, Pajak TF, Sheahan DG, Gunderson L, Mortimer J, et al. Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med. 1998;339(27):1979–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Roth JA, Pass HI, Flanagan MM, Graeber GM, Rosenberg JC, Steinberg S. Randomized clinical trial of preoperative and postoperative adjuvant chemotherapy with cisplatin, vindesine, and bleomycin for carcinoma of the esophagus. J Thorac Cardiovasc Surg. 1988;96(2):242–8.PubMedGoogle Scholar
  20. 20.
    Siewert JR, Stein HJ, Feith M, Bruecher BL, Bartels H, Fink U. Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1,000 consecutive resections at a single center in the Western world. Ann Surg. 2001;234(3):360–7; discussion 368–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Rohatgi PR, Swisher SG, Correa AM, Wu TT, Liao Z, Walsh GL, et al. Comparison of clinical stage, therapy response, and patient outcome between squamous cell carcinoma and adenocarcinoma of the esophagus. Int J Gastrointest Cancer. 2005;36(2):69–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Kitajima M, Kitagawa Y. Surgical treatment of esophageal cancer—the advent of the era of individualization. N Engl J Med. 2002;347(21):1705–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47(1):207–14.PubMedCrossRefGoogle Scholar
  24. 24.
    Moertel CG, Hanley JA. The effect of measuring error on the results of therapeutic trials in advanced cancer. Cancer. 1976;38(1):388–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al. New guidelines to evaluate the response to treatment in solid tumors European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–16.PubMedCrossRefGoogle Scholar
  26. 26.
    James K, Eisenhauer E, Christian M, Terenziani M, Vena D, Muldal A et al. Measuring response in solid tumors: unidimensional versus bidimensional measurement. J Natl Cancer Inst. 1999;91(6):523–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown WA, Thomas J, Gotley D, Burmeister BH, Lim KH, Martin I et al. Use of oesophagogastroscopy to assess the response of oesophageal carcinoma to neoadjuvant therapy. Br J Surg. 2004;91(2):199–204.PubMedCrossRefGoogle Scholar
  28. 28.
    Cerfolio RJ, Bryant AS, Ohja B, Bartolucci AA, Eloubeidi MA. The accuracy of endoscopic ultrasonography with fine-needle aspiration, integrated positron emission tomography with computed tomography, and computed tomography in restaging patients with esophageal cancer after neoadjuvant chemoradiotherapy. J Thorac Cardiovasc Surg. 2005;129(6):1232–41.PubMedCrossRefGoogle Scholar
  29. 29.
    Lightdale CJ, Kulkarni KG. Role of endoscopic ultrasonography in the staging and follow-up of esophageal cancer. J Clin Oncol. 2005;23(20):4483–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Griffith JF, Chan AC, Chow LT, Leung SF, Lam YH, Liang EY et al. Assessing chemotherapy response of squamous cell oesophageal carcinoma with spiral CT. Br J Radiol. 1999;72(859):678–84.PubMedGoogle Scholar
  31. 31.
    Jones DR, Parker LA, Jr., Detterbeck FC, Egan TM. Inadequacy of computed tomography in assessing patients with esophageal carcinoma after induction chemoradiotherapy. Cancer. 1999;85(5):1026–32.PubMedCrossRefGoogle Scholar
  32. 32.
    Westerterp M, van Westreenen HL, Reitsma JB, Hoekstra OS, Stoker J, Fockens P et al. Esophageal cancer: CT, endoscopic US, and FDG PET for assessment of response to neoadjuvant therapy—systematic review. Radiology. 2005;236(3):841–51.PubMedCrossRefGoogle Scholar
  33. 33.
    Ajani JA. Carcinoma of the esophagus: is biology screaming in my deaf ears? J Clin Oncol. 2005;23(19):4256–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Brücher BLDM, Stein HJ, Zimmermann F, Werner M, Sarbia M, Busch R et al. Responders benefit from neoadjuvant radiochemotherapy in esophageal squamous cell carcinoma: results of a prospective phase-II trial. Eur J Surg Oncol. 2004;30(9):963–71.PubMedGoogle Scholar
  35. 35.
    Beer AJ, Wieder HA, Lordick F, Ott K, Fischer M, Becker K et al. Adenocarcinomas of esophagogastric junction: multi-detector row CT to evaluate early response to neoadjuvant chemotherapy. Radiology. 2006;239(2):472–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Port JL, Lee PC, Korst RJ, Liss Y, Meherally D, Christos P et al. Positron emission tomographic scanning predicts survival after induction chemotherapy for esophageal carcinoma. Ann Thorac Surg. 2007;84:393–400.PubMedCrossRefGoogle Scholar
  37. 37.
    Goldstein EB (ed) Blackwell handbook of sensation and perception, 2nd edn. Oxford: Blackwell; 2005.Google Scholar
  38. 38.
    Hayano K, Okazumi S, Shuto K, Matsubara H, Shimada H, Nabeya Y et al. Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma: initial clinical results. Oncol Rep. 2007;18(4):901–8.PubMedGoogle Scholar
  39. 39.
    Law S, Kwong DL, Wong KH, Kwok KF, Wong J. The effects of neoadjuvant chemoradiation on pTNM staging and its prognostic significance in esophageal cancer. J Gastrointest Surg. 2006;10(9):1301–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Mandard AM, Dalibard F, Mandard JC, Marnay J, Henry-Amar M, Petiot JF et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma Clinicopathologic correlations. Cancer. 1994;73(11):2680–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Salzer-Kuntschik M, Delling G, Beron G, Sigmund R. Morphological grades of regression in osteosarcoma after polychemotherapy—study COSS 80. J Cancer Res Clin Oncol. 1983;106(Suppl):21–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Junker K, Langner K, Klinke F, Bosse U, Thomas M. Grading of tumor regression in non-small cell lung cancer: morphology and prognosis. Chest. 2001;120(5):1584–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Becker K, Mueller JD, Schulmacher C, Ott K, Fink U, Busch R et al. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer. 2003;98(7):1521–30.PubMedCrossRefGoogle Scholar
  44. 44.
    Brücher BLDM, Becker K, Lordick F, Fink U, Sarbia M, Stein H et al. The clinical impact of histopathologic response assessment by residual tumor cell quantification in esophageal squamous cell carcinomas. Cancer. 2006;106(10):2119–27.PubMedCrossRefGoogle Scholar
  45. 45.
    Schneider PM, Baldus SE, Metzger R, Kocher M, Bongartz R, Bollschweiler E et al. Histomorphologic tumor regression and lymph node metastases determine prognosis following neoadjuvant radiochemotherapy for esophageal cancer: implications for response classification. Ann Surg. 2005;242(5):684–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Rohatgi PR, Swisher SG, Correa AM, Wu TT, Liao Z, Komaki R et al. Histologic subtypes as determinants of outcome in esophageal carcinoma patients with pathologic complete response after preoperative chemoradiotherapy. Cancer. 2006;106(3):552–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Brücher BLDM, Weber W, Bauer M, Fink U, Avril N, Stein HJ et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg. 2001;233(3):300–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Flamen P, van Cutsem E, Lerut A, Cambier JP, Haustermans K, Bormans G et al. Positron emission tomography for assessment of the response to induction radiochemotherapy in locally advanced oesophageal cancer. Ann Oncol. 2002;13(3):361–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Arslan L, Miller TR, Dehdashti F, Battafarano RJ, Siegel BA. Evaluation of response to neoadjuvant therapy by quantitative 2-deoxy–2-[18F]fluoro-D-glucose with positron emission tomography in patients with esophageal cancer. Mol Imaging. 2002;4(4):301–10.CrossRefGoogle Scholar
  50. 50.
    Kroep JR, van Groeningen CJ, Cuesta MA, Craanen ME, Hoekstra OS, Comans EF et al. Positron emission tomography using 2-deoxy-2-[18F]fluoro-D-glucose for response monitoring in locally advanced gastrooesophageal cancer; a comparison of different analytical methods. Mol Imaging Biol. 2003;5(5):337–46.PubMedCrossRefGoogle Scholar
  51. 51.
    Downey RJ, Akhurst T, Ilson D, Ginsberg R, Bains MS, Gonen M et al. Whole body 18FDG-PET and the response of esophageal cancer to induction therapy: results of a prospective trial. J Clin Oncol. 2003;21(3):428–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Swisher S, Erasmus J, Masih M, Correa AM, Macapinlac H, Ajani JA et al. 2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer. 2004;101(8):1776–85.PubMedCrossRefGoogle Scholar
  53. 53.
    Song JY, Kim JH, Ryu JS, Lee GH, Kim SB, Park SI et al. FDG-PET in the prediction of pathologic response after neoadjuvant chemoradiotherapy in locally advanced, resectable esophageal cancer. Int J Radiat Oncol Biol Phys. 2005;63(4):1053–9.PubMedGoogle Scholar
  54. 54.
    Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Masuda N et al. Usefulness of positron emission tomography for assessing the response of neoadjuvant chemoradiotherapy in patients with esophageal cancer. Am J Surg. 2002;184(3):279–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Levine EA, Farmer MR, Clark P, Mishra G, Ho C, Geisinger KR et al. Predictive value of 18-fluoro-deoxy-glucose-positron emission tomography (18F-FDG-PET) in the identification of responders to chemoradiation therapy for the treatment of locally advanced esophageal cancer. Ann Surg. 2006;243(4):472–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Duong CP, Hicks RJ. FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging. 2006;33(7):770–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim MK, Ryu JS, Kim SB, Ahn JH, Kim SY, Park SI et al. Value of complete metabolic response by (18)F-fluorodeoxyglucose-positron emission tomography in oesophageal cancer for prediction of pathologic response and survival after preoperative chemoradiotherapy. Eur J Cancer. 2007;43(9):1385–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Konski AA, Cheng JD, Goldberg M, Li T, Maurer A, Yu JQ et al. Correlation of molecular response as measured by 18-FDG positron emission tomography with outcome after chemoradiotherapy in patients with esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2007;69(2):358–63.PubMedGoogle Scholar
  59. 59.
    Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol. 2006;79(937):32–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Castell F, Cook GJR. Quantitative techniques in 18 FDG PET scanning in oncology. Br J Cancer. 2008;98:1597–1601.PubMedCrossRefGoogle Scholar
  61. 61.
    Wong WL, Chamberas RJ. Role of PET/PET CT in staging and restaging of thoracic oesophageal cancer and gastro-oesophageal cancer: a literature review. Abdom Imaging. 2008;33:183–90.PubMedCrossRefGoogle Scholar
  62. 62.
    Weber W, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol. 2001;19(12):3058–65.PubMedGoogle Scholar
  63. 63.
    Wieder H, Brücher BLDM, Zimmermann F, Becker K, Lordick F, Beer A et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol. 2004;22(5):900–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Ott K, Weber WA, Lordick F, Becker K, Busch R, Herrmann K et al. Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin Oncol. 2006;24(29):4692–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Gillham CM, Lucey JA, Keogan M, Duffy GJ, Malik V, Raouf AA et al. (18)FDG uptake during induction chemoradiation for oesophageal cancer fails to predict histomorphological tumour response. Br J Cancer. 2006;95(9):1174–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Lordick F, Ott K, Krause B et al. PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the Municon phase II trial. Lancet Oncol. 2007;46(6):263–70.Google Scholar
  67. 67.
    Perez EA, Bawejy M. HER2-positive breast cancer: current treatment strategies. Cancer Invest. 2008;26(6):545–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Sarbia M, Pühringer-Oppermann F, Brücher BLDM. The predictive value of molecular markers (p53, EGFR, ATM, CHK2) in multimodal treated esophageal squamous cell carcinoma. Br J Cancer. 2007;97(19):1404–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Brücher BLDM, Keller G, Werner M, Müller U, Lassmann S, Cabras AD et al. Using Q-RT-PCR to measure Cyclin D1, TS, TP, DPD, and Her-2/neu as predictors for response, survival, and recurrence in patients with esophageal squamous cell carcinoma following radiochemotherapy. Int J Colorectal Dis. 2008;24(1):69–77.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2009

Authors and Affiliations

  • Björn L. D. M. Brücher
    • 1
  • Stephen G. Swisher
    • 2
  • Alfred Königsrainer
    • 1
  • Derek Zieker
    • 1
  • Jörg Hartmann
    • 3
  • Hubert Stein
    • 4
  • Yuko Kitagawa
    • 5
  • Simon Law
    • 6
  • Jaffer A. Ajani
    • 7
  1. 1.Department of Surgery, Comprehensive Cancer CenterUniversity of TübingenTübingenGermany
  2. 2.Department of Thoracic and Cardiovascular SurgeryUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA
  3. 3.Department of Oncology, Comprehensive Cancer CenterUniversity of TübingenTübingenGermany
  4. 4.Department of SurgeryUniversity of SalzburgSalzburgAustria
  5. 5.Department of SurgeryKeio University Medical SchoolTokyoJapan
  6. 6.Department of SurgeryQueen Mary Hospital/University of Hong KongHong KongChina
  7. 7.Department of Gastrointestinal Oncology and Digestive DiseaseUniversity of Texas M.D. Anderson Cancer CenterHoustonUSA

Personalised recommendations