Annals of Surgical Oncology

, Volume 14, Issue 1, pp 3–13 | Cite as

Positron Emission Tomography (PET) and Mammography (PEM) for Breast Cancer: Importance to Surgeons

Education Review

Keywords

Positron Emission Tomography Sentinel Node Biopsy Positron Emission Tomography Imaging Internal Mammary Lymph Node Completion Axillary Lymph Node Dissection 

Notes

Acknowledgments

I would like to thank Dr. Jack Van Geffen for providing the PET images and Ms. Sharon Mayrgundter for her efforts on manuscript preparation.

References

  1. 1.
    Minn H, Soini I. [18F]fluorodeoxyglucose scintigraphy in diagnosis and follow up of treatment in advanced breast cancer. Eur J Nucl Med 1989; 15(2):61–6PubMedCrossRefGoogle Scholar
  2. 2.
    Hicks RJ, Binns D, Stabin MG. Pattern of uptake and excretion of 18F-FDG in the lactating breast. J Nucl Med 2001; 42:1238–1242PubMedGoogle Scholar
  3. 3.
    Nieweg OE, Kim EE, Wong EH, Broussard WF, Singletary SE, Hortobagyi GN, et al. Positron emission tomography with fluorine-18 deoxyglucose in the detection and staging of breast cancer. Cancer 1993; 71:3920–3925PubMedCrossRefGoogle Scholar
  4. 4.
    Aliaga A, Rousseau JA, Ouellette R, et al. Breast cancer models to study the expression of estrogen receptors with small animal PET imaging. Nucl Med Biol 2004; 31(6):761–70PubMedCrossRefGoogle Scholar
  5. 5.
    Schuster DM, Halkar RK. Molecular imaging in breast cancer. Radiol Clin North Am 2004; 42(5):885–908, vi–viiPubMedCrossRefGoogle Scholar
  6. 6.
    Krak NC, van der Hoeven JJ, Hoekstra OS, et al. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 2003; 30(5):674–81PubMedCrossRefGoogle Scholar
  7. 7.
    Chen X, Moore MO, Lehman CD, et al. Combined use of MRI and PET to monitor response and assess residual disease for locally advanced breast cancer treated with neoadjuvant chemotherapy. Acad Radiol 2004; 11(10):1115–24PubMedCrossRefGoogle Scholar
  8. 8.
    Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med 2005; 35(2):84–99PubMedCrossRefGoogle Scholar
  9. 9.
    Mankoff DA, Dunnwald LK, Gralow JR, et al. Blood flow and metabolism in locally advanced breast cancer: relationship to response to therapy. J Nucl Med 2002; 43(4):500–9PubMedGoogle Scholar
  10. 10.
    Semple SI, Gilbert FJ, Redpath TW, et al. The relationship between vascular and metabolic characteristics of primary breast tumours. Eur Radiol 2004; 14(11):2038–45PubMedCrossRefGoogle Scholar
  11. 11.
    Wolf G, Aigner RM, Schaffler G, et al. The 936C>T polymorphism of the gene for vascular endothelial growth factor is associated with 18F-fluorodeoxyglucose uptake. Breast Cancer Res Treat 2004; 88(3):205–8PubMedCrossRefGoogle Scholar
  12. 12.
    Byrne AM, Hill AD, Skehan SJ, et al. Positron emission tomography in the staging and management of breast cancer. Br J Surg 2004; 91(11):1398–409PubMedCrossRefGoogle Scholar
  13. 13.
    Lovrics PJ, Chen V, Coates G, et al. A prospective evaluation of positron emission tomography scanning, sentinel lymph node biopsy, and standard axillary dissection for axillary staging in patients with early stage breast cancer. Ann Surg Oncol 2004; 11(9):846–53PubMedCrossRefGoogle Scholar
  14. 14.
    Wahl RL, Siegel BA, Coleman RE, Gatsonis CG. Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 2004; 22(2):277–85PubMedCrossRefGoogle Scholar
  15. 15.
    Weir L, Worsley D, Bernstein V. The value of FDG positron emission tomography in the management of patients with breast cancer. Breast J 2005; 11(3):204–9PubMedCrossRefGoogle Scholar
  16. 16.
    Bellon JR, Livingston RB, Eubank WB, et al. Evaluation of the internal mammary lymph nodes by FDG-PET in locally advanced breast cancer (LABC). Am J Clin Oncol 2004; 27(4):407–10PubMedCrossRefGoogle Scholar
  17. 17.
    Pecking AP, Mechelany-Corone C, Bertrand-Kermorgant F, et al. Detection of occult disease in breast cancer using fluorodeoxyglucose camera-based positron emission tomography. Clin Breast Cancer 2001; 2(3):229–34PubMedGoogle Scholar
  18. 18.
    Kim SJ, Kim SK, Lee ES, et al. Predictive value of [18F]FDG PET for pathological response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol 2004; 15(9):1352–7PubMedCrossRefGoogle Scholar
  19. 19.
    Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron emission tomography using F18-fluorodeoxy-d-glucose to predict the pathological response of breast cancer to primary chemotherapy. J Clin Oncol 2000; 18:1676–1688PubMedGoogle Scholar
  20. 20.
    Danforth DN Jr, Aloj L, Carrasquillo JA, et al. The role of 18F-FDG-PET in the local/regional evaluation of women with breast cancer. Breast Cancer Res Treat 2002; 75(2):135–46PubMedCrossRefGoogle Scholar
  21. 21.
    van Oost FJ, van der Hoeven JJ, Hoekstra OS, et al. Staging in patients with locoregionally recurrent breast cancer: current practice and prospects for positron emission tomography. Eur J Cancer 2004; 40(10):1545–53PubMedCrossRefGoogle Scholar
  22. 22.
    Dose J, Bleckmann C, Bachmann S, et al. Comparison of fluorodeoxyglucose positron emission tomography and “conventional diagnostic procedures” for the detection of distant metastases in breast cancer patients. Nucl Med Commun 2002; 23(9):857–64PubMedCrossRefGoogle Scholar
  23. 23.
    Goerres GW, Michel SC, Fehr MK, et al. Follow-up of women with breast cancer: comparison between MRI and FDG PET. Eur Radiol 2003; 13(7):1635–44PubMedCrossRefGoogle Scholar
  24. 24.
    Grahek D, Montravers F, Kerrou K, et al. [18F]FDG in recurrent breast cancer: diagnostic performances, clinical impact and relevance of induced changes in management. Eur J Nucl Med Mol Imaging 2004; 31(2):179–88PubMedCrossRefGoogle Scholar
  25. 25.
    Walter C, Scheidhauer K, Scharl A, et al. Clinical and diagnostic value of preoperative MR mammography and FDG-PET in suspicious breast lesions. Eur Radiol 2003; 13(7):1651–6PubMedCrossRefGoogle Scholar
  26. 26.
    Pelosi E, Messa C, Sironi S, et al. Value of integrated PET/CT for lesion localisation in cancer patients: a comparative study. Eur J Nucl Med Mol Imaging 2004; 31(7):932–9PubMedCrossRefGoogle Scholar
  27. 27.
    Bohm B, Voth M, Geoghegan J, et al. Impact of positron emission tomography on strategy in liver resection for primary and secondary liver tumors. J Cancer Res Clin Oncol 2004; 130(5):266–72PubMedCrossRefGoogle Scholar
  28. 28.
    Thompson CJ, Murthy K, Weinberg IN, Mako F. Feasibility study for positron emission mammography. Med Phys 1994; 21(4):529–38PubMedCrossRefGoogle Scholar
  29. 29.
    Bergman AM, Thompson CJ, Murthy K, et al. Technique to obtain positron emission mammography images in registration with X-ray mammograms. Med Phys 1998; 25(11):2119–29PubMedCrossRefGoogle Scholar
  30. 30.
    Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for breast cancer imaging. Med Phys 2000; 27(7):1535–43PubMedCrossRefGoogle Scholar
  31. 31.
    Thompson CJ, Murthy K, Aznar M, et al. Preliminary clinical evaluation of an instrument for “positron emission mammography” in the detection of breast cancer. Clin Positron Imaging 1998; 1(4):265PubMedCrossRefGoogle Scholar
  32. 32.
    Weinberg I, Majewski S, Weisenberger A, et al. Preliminary results for positron emission mammography: real-time functional breast imaging in a conventional mammography gantry. Eur J Nucl Med 1996; 23(7):804–6PubMedCrossRefGoogle Scholar
  33. 33.
    Qi J, Huesman RH. Scatter correction for positron emission mammography. Phys Med Biol 2002; 47(15):2759–71PubMedCrossRefGoogle Scholar
  34. 34.
    Weinberg IN, Beylin D, Zavarzin V, et al. Positron emission mammography: high-resolution biochemical breast imaging. Technol Cancer Res Treat 2005; 4(1):55–60PubMedGoogle Scholar
  35. 35.
    Levine EA, Freimanis RI, Perrier ND, et al. Positron emission mammography: initial clinical results. Ann Surg Oncol 2003; 10(1):86–91PubMedCrossRefGoogle Scholar
  36. 36.
    Rosen EL, Turkington TG, Soo MS, et al. Detection of primary breast carcinoma with a dedicated, large-field-of-view FDG PET mammography device: initial experience. Radiology 2005; 234(2):527–34PubMedCrossRefGoogle Scholar
  37. 37.
    Tafra L, Cheng Z, Uddo J, et al. Pilot clinical trial of FDG positron emission mammography (PEM) in the surgical management of breast cancer. Ann Surg Oncol 2005; 190(4):628–32Google Scholar
  38. 38.
    Raylman RR, Majewski S, Weisenberger AG, et al. Positron emission mammography-guided breast biopsy. J Nucl Med 2001; 42(6):960–6PubMedGoogle Scholar
  39. 39.
    Smith MF, Raylman RR, Majewski S, Weisenberger AG. Positron emission mammography with tomographic acquisition using dual planar detectors: initial evaluations. Phys Med Biol 2004; 49(11):2437–52PubMedCrossRefGoogle Scholar
  40. 40.
    Rasey JS, Koh WJ, Evans ML, et al. Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 1996; 36(2):417–28PubMedCrossRefGoogle Scholar
  41. 41.
    Chen X, Liu S, Hou Y, et al. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imaging Biol 2004; 6(5):350–9PubMedCrossRefGoogle Scholar
  42. 42.
    Alauddin MM, Shahinian A, Gordon EM, Conti PS. Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model. Mol Imaging 2004; 3(2):76–84PubMedCrossRefGoogle Scholar
  43. 43.
    Fei X, Wang JQ, Miller KD, et al. Synthesis of [18F]Xeloda as a novel potential PET radiotracer for imaging enzymes in cancers. Nucl Med Biol 2004; 31(8):1033–41PubMedCrossRefGoogle Scholar
  44. 44.
    Liu CS, Shen YY, Lin CC, et al. Clinical impact of [(18)F]FDG-PET in patients with suspected recurrent breast cancer based on asymptomatically elevated tumor marker serum levels: a preliminary report. Jpn J Clin Oncol 2002; 32(7):244–7PubMedCrossRefGoogle Scholar
  45. 45.
    Min CJ, Tafra L, Verbanac KM. Identification of superior markers for polymerase chain reaction detection of breast cancer metastases in sentinel lymph nodes. Cancer Res 1998; 58(20):4581–4PubMedGoogle Scholar
  46. 46.
    Mannie A, Cheng Z, Sawyer K, Tafra L, Whitworth P, Verbanac K. Use of circulating tumor cells and serum protein markers to monitor breast cancer patients at high risk for recurrent disease. Abstract Book: American Society of Breast Surgeons Annual Meeting, 16–20 March 2005, Los Angeles, CA, USAGoogle Scholar
  47. 47.
    Higashi T, Saga T, Ishimori T, et al. What is the most appropriate scan timing for intraoperative detection of malignancy using 18F-FDG-sensitive gamma probe? Preliminary phantom and preoperative patient study. Ann Nucl Med 2004; 18(2):105–14PubMedCrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2006

Authors and Affiliations

  1. 1.The Breast CenterAnne Arundel Medical CenterAnnapolisUSA

Personalised recommendations