Advertisement

Annals of Surgical Oncology

, Volume 11, Issue 8, pp 786–794 | Cite as

Impact of 18F-Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography (FDG-PET) in Patients with Biochemical Evidence of Recurrent or Residual Medullary Thyroid Cancer

  • J. W. B. de Groot
  • Th. P. Links
  • P. L. Jager
  • T. Kahraman
  • J. Th. M. Plukker
Original Articles

Abstract

Background: Conventional imaging such as with 99mTc(V)dimercaptosunnic acid (DMSA), 111In-octreotide scintigraphy, computed tomography (CT), and magnetic resonance imaging (MRI) rarely localizes occult medullary thyroid cancer (MTC). The role of 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is not well defined. The aim of this study was to examine the usefulness of postoperative FDG-PET in localizing MTC metastases.

Methods: FDG-PET was performed in 26 patients with elevated serum tumor markers after total thyroidectomy with central compartment dissection and additional neck dissection on indication. Patient- and lesion-based results were compared with the findings of conventional nuclear imaging and validated by morphological imaging (CT, MRI, ultrasonography), including bone scintigraphy and pathology when possible. Clinical impact was evaluated.

Results: FDG-PET detected foci in 50% of patients with lesion-based sensitivity of 96%. 111In-octreotide detected foci in 19% with sensitivity of 41%, and 99mTc(V)DMSA scintigraphy and morphological imaging detected foci in 21% and 40%, respectively, with sensitivity of 57% and 87%. No lesions were found in 11 patients (42%). Positive FDG-PET findings led to surgical intervention in nine patients (35%). They all underwent surgery for removal of residual tumor or metastases. One patient achieved disease-free status. In all patients who underwent surgery, serum calcitonin levels were reduced by an average of 58 ± 31%.

Conclusions: For detection of occult MTC lesions, FDG-PET is superior to conventional nuclear imaging and is the best detection method yet available. FDG-PET in postoperative follow-up has clinical value and may be used for guiding reoperation and additional morphological imaging preoperatively.

Key Words:

FDG-PET Medullary thyroid cancer Metastases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Saad MF, Ordonez NG, Rashid RK, et al. Medullary carcinoma of the thyroid: study of the clinical features and prognostic factors in 161 patients. Medicine 1984; 63: 319–42.PubMedGoogle Scholar
  2. 2.
    Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Klark OH. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer 2000; 88: 1139–48.PubMedGoogle Scholar
  3. 3.
    Brierley J, Tsang R, Simpson WJ, Gospodarowicz M, Sutcliffe S, Panzarella T. Medullary thyroid cancer: analysis of survival and prognostic factors and the role of radiation therapy in local control. Thyroid 1996; 6: 305–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Lairmore TC, Wells SA Jr. Medullary carcinoma of the thyroid: current diagnosis and management. Seminin Surg Oncol 1991; 7: 92–9.Google Scholar
  5. 5.
    Orlandi F, Caraci P, Mussa A, Saggiorato E, Pancani G, Angeli A. Treatment of medullary thyroid carcinoma: an update. Endocr Relat Cancer 2001; 8: 135–47.PubMedGoogle Scholar
  6. 6.
    Heshmati HM, Gharib H, van Heerden JA. Advances and controversies in the diagnosis and management of medullary thyroid carcinoma. Am J Med 1997; 103: 60–9.PubMedGoogle Scholar
  7. 7.
    Hoefnagel CA, Delprat CC, Marcuse HR, de Vijlder JJM. Role of thallium-201 total-body scintigraphy in follow-up of thyroid carcinoma. J Nucl Med 1986; 27: 1854–7.PubMedGoogle Scholar
  8. 8.
    Amstein NB, Juni JE, Sisson JC, Lloyd RV, Thompson NW. Recurrent medullary carcinoma of the thyroid demonstrated by thallium-201 scintigraphy. J Nucl Med 1986; 27: 1564–8.Google Scholar
  9. 9.
    Adalet I, Kocak M, Oguz H, Alagol F, Cantez S. Determination of medullary thyroid carcinoma metastases by 201Tl, 99Tcm(V)DMSA, 99Tcm-MIBI and 99Tcm-tetrofosmin. Nucl Med Commun 1999; 20: 353–9.PubMedGoogle Scholar
  10. 10.
    Baulieu J, Guilloteau D, Delisle M, et al. Radioiodinated metaiodobenzylguanidine uptake in medullary thyroid cancer. Cancer 1987; 60: 2189–94.PubMedGoogle Scholar
  11. 11.
    Ugur O, Kostakglu L, Guler N, et al. Comparison of 99mTc(V)-DMSA, 201Tl and 99mTc-MIBI imaging in the follow-up of patients with medullary carcinoma of the thyroid. Eur J Nucl Med 1996; 23: 1367–71.PubMedGoogle Scholar
  12. 12.
    Guerra U, Pizzocaro C, Terzi A, Giubbini R, Bestagno M. The use of 99m Tc(V)DMSA as imaging for the medullary thyroid carcinoma (MTC). J Nucl Med Allied Sci 1988; 32: 242–7.PubMedGoogle Scholar
  13. 13.
    Mojiminiyi OA, Udelsman R, Soper ND, Shepstone BJ, Dudley NE. Pentavalent Tc-99m DMSA scintigraphy. Prospective evaluation of its role in the management of patients with medullary carcinoma of the thyroid. Clin Nucl Med 1991; 16: 259–62.PubMedGoogle Scholar
  14. 14.
    Berna L, Cabezas R, Mora J, Torres G, Estorch M, Carrio I. 111In-octreotide and 99mTc(V)-dimercaptosuccinic acid studies in the imaging of recurrent medullary thyroid carcinoma. J Endocrinol 1995; 144: 339–345.CrossRefPubMedGoogle Scholar
  15. 15.
    Adams S, Baum RP, Hertel A, Schumm-Dräger PM, Usadel KH, Hor G. Comparison of metabolic and receptor imaging in recurrent medullary thyroid carcinoma with histopathological findings. Eur J Nucl Med 1998; 25: 1277–1283.CrossRefPubMedGoogle Scholar
  16. 16.
    Berna L, Chico A, Matias-Guiu X, et al. Use of somatostatin analogue scintigraphy in the localization of recurrent medullary thyroid carcinoma. Eur J Nucl Med 1998; 25: 1482–8.PubMedGoogle Scholar
  17. 17.
    Krausz Y, Rosler A, Guttmann H, et al. Somatostatin receptor scintigraphy for early detection of regional and distant metastases of medullary carcinoma of the thyroid. Clin Nucl Med 1999; 24: 256–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Gasparoni P, Rubello D, Ferlin G. Potential role of fluorine-18-deoxyglucose (FDG) positron emission tomography (PET) in the staging of primitive and recurrent medullary thyroid carcinoma. J Endocrinol Invest 1997; 20: 527–30.PubMedGoogle Scholar
  19. 19.
    Musholt TJ, Musholt PB, Dehdashti F, Moley JF. Evaluation of fluorodeoxyglucose-positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery. 1997; 122: 1049–60;discussion 1060–1.PubMedGoogle Scholar
  20. 20.
    Brandt-Mainz K, Muller SP, Gorges R, Saller B, Bockisch A. The value of fluorine-18 fluorodeoxyglucose PET in patients with medullary thyroid cancer. Eur J Nucl Med 2000; 27: 490–6.PubMedGoogle Scholar
  21. 21.
    Diehl M, Risse JH, Brandt-Mainz K, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in medullary thyroid cancer: results of a multicentre study. Eur J Nucl Med 2001; 28: 1671–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Szakall S Jr., Esik O, Bajzik G, et al. 18F-FDG PET detection of lymph node metastases in medullary thyroid carcinoma. J Nucl Med 2002; 43: 66–71.PubMedGoogle Scholar
  23. 23.
    Kebebew E, Kikuchi S, Duh QY, Clark OH. Long-term results of reoperation and localizing studies in patients with persistent or recurrent medullary thyroid cancer. Arch Surg 2000; 135: 895–901.PubMedGoogle Scholar
  24. 24.
    Chen H, Roberts JR, Ball DW, et al. Effective long-term palliation of symptomatic, incurable metastatic medullary thyroid cancer by operative resection. Ann Surg 1998; 227: 887–95.PubMedGoogle Scholar
  25. 25.
    van Heerden JA, Grant CS, Gharib H, Hay ID, Ilstrup DM. Long-term course of patients with persistent hypercalcitoninemia after apparent curative primary surgery for medullary thyroid carcinoma. Ann Surg 1990; 212: 395–400.PubMedGoogle Scholar
  26. 26.
    Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. Eur J Nucl Med 2001; 28: 64–71.CrossRefPubMedGoogle Scholar
  27. 27.
    Nakamoto Y, Osman M, Wahl RL. Prevalence and patterns of bone metastases detected with positron emission tomography using F-18 FDG. Clin Nucl Med 2003; 28: 302–7.PubMedGoogle Scholar
  28. 28.
    Reubi JC, Chayvialle JA, Franc B, Cohen R, Calmettes C, Modigliani E. Somatostatin receptors and somatostatin content in medullary thyroid carcinomas. Lab Invest 1991; 64: 567–73.PubMedGoogle Scholar
  29. 29.
    Wang Q, Takashima S, Fukuda H, Takayama F, Kobayashi S, Sone S. Detection of medullary thyroid carcinoma and regional lymph node metastases by magnetic resonance imaging. Arch Otolaryngol Head Neck Surg 1999; 125: 842–8.PubMedGoogle Scholar
  30. 30.
    Van den Brekel MW. Lymph node metastases: CT and MRI. Eur J Radiol 2000; 33: 230–8.PubMedGoogle Scholar
  31. 31.
    James C, Starks M, MacGillivray DC, White J. The use of imaging studies in the diagnosis and management of thyroid cancer and hyperparathyroidism. Surg Oncol Clin N Am 1999; 8: 145–69.PubMedGoogle Scholar
  32. 32.
    Adams S, Baum R, Rink T, Schumm-Dräger PM, Usadel KH, Hör G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 1998; 25: 79–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Tung WS, Vesely TM, Moley JF. Laparoscopic detection of hepatic metastases in patients with residual or recurrent medullary thyroid cancer. Surgery 1995; 118: 1024–9.PubMedGoogle Scholar
  34. 34.
    Ésik O, Szavcsur P, Szakall S Jr., et al. Angiography effectively supports the diagnosis of hepatic metastases in medullary thyroid carcinoma. Cancer 2001; 91: 2084–95.PubMedGoogle Scholar
  35. 35.
    Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999; 19: 61–77.PubMedGoogle Scholar

Copyright information

© The Society of Surgical Oncology, Inc. 2004

Authors and Affiliations

  • J. W. B. de Groot
    • 1
  • Th. P. Links
    • 2
  • P. L. Jager
    • 3
  • T. Kahraman
    • 1
  • J. Th. M. Plukker
    • 1
    • 4
  1. 1.Departments of Surgical OncologyUniversity HospitalGroningenThe Netherlands
  2. 2.EndocrinologyUniversity HospitalGroningenThe Netherlands
  3. 3.Nuclear Medicine/PET CenterUniversity HospitalGroningenThe Netherlands
  4. 4.Department of Surgical OncologyUniversity Hospital GroningenGroningenThe Netherlands

Personalised recommendations