MiR-194-5p in Pancreatic Ductal Adenocarcinoma Peritoneal Washings is Associated with Peritoneal Recurrence and Overall Survival in Peritoneal Cytology-Negative Patients

  • Hirokazu Kubo
  • Yukihiko Hiroshima
  • Ryutaro Mori
  • Yusuke Saigusa
  • Takashi Murakami
  • Yasuhiro Yabushita
  • Yu Sawada
  • Yuki Homma
  • Takafumi Kumamoto
  • Ryusei Matsuyama
  • Itaru EndoEmail author
Pancreatic Tumors



Peritoneal dissemination is one of the major recurrence patterns in patients with pancreatic ductal adenocarcinoma (PDAC) and is associated with poor prognosis. Here, we assessed the diagnostic potential of microRNA (miRNA) profiles in peritoneal washings for prediction of peritoneal dissemination in PDAC.

Patients and Methods

From January 2016 to July 2017, peritoneal washings were obtained prospectively from 59 patients with PDAC undergoing surgery the Yokohama City University Hospital. MiRNA expression was evaluated by Agilent human miRNA microarray and quantitative reverse-transcription polymerase chain reaction.


Microarray analysis identified upregulated and downregulated miRNAs in peritoneal washings of patients with peritoneal dissemination. We validated four miRNAs (miR-141-3p, miR-194-3p, miR-194-5p, and miR-200c-3p) with high expression in peritoneal washings. The cumulative incidence rate of peritoneal recurrence in peritoneal cytology-negative patients in the miR-194-5p high group was significantly higher than that in the miR-194-5p low group (p = 0.002). Univariate and multivariate analyses revealed that high miR-194-5p was associated with overall survival (OS).


High expression of miR-194-5p in peritoneal washings is associated with peritoneal recurrence and poor OS in patients with peritoneal cytology-negative PDAC.



We would like to thank Editage ( for English language editing.


This study was funded by MSD K.K., Merck Biopharma Co., Ltd., and Takeda Research Support from Takeda Pharmaceutical Company.


The authors declare that they have no conflicts of interest.

Supplementary material

Kaplan–Meier analysis of overall survival according to miR-194-5p expression level and adjuvant chemotherapy. Overall survival curves in patients with pancreatic cancer according to the four risk groups (combining miR-194-5p expression level and adjuvant chemotherapy) (TIF 127 kb)


  1. 1.
    Malvezzi M, Carioli G, Bertuccio P, et al. European cancer mortality predictions for the year 2016 with focus on leukaemias. Ann Oncol. 2016;27(4):725–731.CrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA: Cancer J Clin. 2017;67(1):7–30.Google Scholar
  3. 3.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–2921.CrossRefGoogle Scholar
  4. 4.
    Asagi A, Ohta K, Nasu J, et al. Utility of contrast-enhanced FDG-PET/CT in the clinical management of pancreatic cancer: impact on diagnosis, staging, evaluation of treatment response, and detection of recurrence. Pancreas. 2013;42(1):11–19.CrossRefGoogle Scholar
  5. 5.
    Uesaka K, Boku N, Fukutomi A, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet (London, England). 2016;388(10041):248–257.CrossRefGoogle Scholar
  6. 6.
    Hoshimoto S, Hishinuma S, Shirakawa H, et al. Prognostic significance of intraoperative peritoneal washing cytology for patients with potentially resectable pancreatic ductal adenocarcinoma. Pancreatol. IAP. 2017;17(1):109–114.CrossRefGoogle Scholar
  7. 7.
    Satoi S, Murakami Y, Motoi F, et al. Reappraisal of peritoneal washing cytology in 984 patients with pancreatic ductal adenocarcinoma who underwent margin-negative resection. J Gastrointest Surg. 2015;19(1):6–14 (discussion 14).CrossRefGoogle Scholar
  8. 8.
    Simojoki M, Santala M, Vuopala S, Kauppila A. The prognostic value of peritoneal cytology in ovarian cancer. Eur J Gynaecol Oncol. 1999;20(5–6):357–360.Google Scholar
  9. 9.
    Ikoma N, Blum M, Chiang YJ, et al. Yield of staging laparoscopy and lavage cytology for radiologically occult peritoneal carcinomatosis of gastric cancer. Ann Surg Oncol. 2016;23(13):4332–4337.CrossRefGoogle Scholar
  10. 10.
    Chiu CC, Chen JJ, Su SB, Wang JJ. Value of peritoneal cytology in potentially resectable pancreatic cancer (Br J Surg 2013; 100: 1791–1796). Br J Surg. 2014;101(8):1031.CrossRefGoogle Scholar
  11. 11.
    Yoshioka R, Saiura A, Koga R, et al. The implications of positive peritoneal lavage cytology in potentially resectable pancreatic cancer. World J Surg. 2012;36(9):2187–2191.CrossRefGoogle Scholar
  12. 12.
    Yachida S, Fukushima N, Sakamoto M, Matsuno Y, Kosuge T, Hirohashi S. Implications of peritoneal washing cytology in patients with potentially resectable pancreatic cancer. Br J Surg. 2002;89(5):573–578.CrossRefGoogle Scholar
  13. 13.
    Aoyama T, Katayama Y, Murakawa M, et al. Clinical implication of peritoneal cytology in the pancreatic cancer patients who underwent curative resection followed by adjuvant gemcitabine or S-1 chemotherapy. Hepato-gastroenterology. 2015;62(137):200–206.Google Scholar
  14. 14.
    Cao F, Li J, Li A, Li F. Prognostic significance of positive peritoneal cytology in resectable pancreatic cancer: a systemic review and meta-analysis. Oncotarget. 2017;8(9):15004–15013.Google Scholar
  15. 15.
    Hirabayashi K, Imoto A, Yamada M, et al. Positive intraoperative peritoneal lavage cytology is a negative prognostic factor in pancreatic ductal adenocarcinoma: a retrospective single-center study. Front Oncol. 2015;5:182.CrossRefGoogle Scholar
  16. 16.
    Iwagami Y, Eguchi H, Wada H, et al. Implications of peritoneal lavage cytology in resectable left-sided pancreatic cancer. Surg Today. 2015;45(4):444–450.CrossRefGoogle Scholar
  17. 17.
    Sato K, Mori R, Hiroshima Y, et al. RT-PCR of peritoneal washings predicts peritoneal pancreatic cancer recurrence. J Surg Res. 2018;226:122–130.CrossRefGoogle Scholar
  18. 18.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–714.CrossRefGoogle Scholar
  19. 19.
    Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20.CrossRefGoogle Scholar
  20. 20.
    Song B, Zheng K, Ma H, et al. miR-429 determines poor outcome and inhibits pancreatic ductal adenocarcinoma growth by targeting TBK1. Cell Physiol Biochem. 2015;35(5):1846–1856.CrossRefGoogle Scholar
  21. 21.
    Tokuhisa M, Ichikawa Y, Kosaka N, et al. Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One. 2015;10(7):e0130472.CrossRefGoogle Scholar
  22. 22.
    Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien–Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–196.CrossRefGoogle Scholar
  23. 23.
    Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213.CrossRefGoogle Scholar
  24. 24.
    Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating exosomal microRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncology. 2017;92(6):360–370.CrossRefGoogle Scholar
  25. 25.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–1474.CrossRefGoogle Scholar
  26. 26.
    Tempero MA, Arnoletti JP, Behrman S, et al. Pancreatic adenocarcinoma. J Natl Comp Cancer Netw. 2010;8(9):972–1017.CrossRefGoogle Scholar
  27. 27.
    Ariake K, Motoi F, Ohtsuka H, et al. Predictive risk factors for peritoneal recurrence after pancreatic cancer resection and strategies for its prevention. Surg Today. 2017;47(12):1434–1442.CrossRefGoogle Scholar
  28. 28.
    Zhang J, Zhao CY, Zhang SH, et al. Upregulation of miR-194 contributes to tumor growth and progression in pancreatic ductal adenocarcinoma. Oncol Rep. 2014;31(3):1157–1164.CrossRefGoogle Scholar
  29. 29.
    Mees ST, Mardin WA, Wendel C, et al. EP300–a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer. 2010;126(1):114–124.CrossRefGoogle Scholar
  30. 30.
    Wei R, Ding C, Rodriguez RA, Del Mar Requena Mullor M. The SOX2OT/miR-194-5p axis regulates cell proliferation and mobility of gastric cancer through suppressing epithelial-mesenchymal transition. Oncol Lett. 2018;16(5):6361–6368.Google Scholar
  31. 31.
    Jiang JH, Liu C, Cheng H, et al. Epithelial-mesenchymal transition in pancreatic cancer: Is it a clinically significant factor? Biochim Biophys Acta. 2015;1855(1):43–49.Google Scholar
  32. 32.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428.CrossRefGoogle Scholar
  33. 33.
    Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21–45.CrossRefGoogle Scholar
  34. 34.
    Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Sem Cancer Biol. 2012;22(5-6):396–403.CrossRefGoogle Scholar
  35. 35.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–142.CrossRefGoogle Scholar
  36. 36.
    Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395–2406.CrossRefGoogle Scholar
  37. 37.
    Roland CL, Yang AD, Katz MH, et al. Neoadjuvant therapy is associated with a reduced lymph node ratio in patients with potentially resectable pancreatic cancer. Ann Surg Oncol. 2015;22(4):1168–1175.CrossRefGoogle Scholar
  38. 38.
    Bradley A, Van Der Meer R. Upfront surgery versus neoadjuvant therapy for resectable pancreatic cancer: systematic review and Bayesian network meta-analysis. Sci Rep. 2019;9(1):4354.CrossRefGoogle Scholar
  39. 39.
    Bradley A, Van Der Meer R. Neoadjuvant therapy versus upfront surgery for potentially resectable pancreatic cancer: a Markov decision analysis. PLoS One. 2019;14(2):e0212805.CrossRefGoogle Scholar
  40. 40.
    Motoi F, Satoi S, Honda G, et al. A single-arm, phase II trial of neoadjuvant gemcitabine and S1 in patients with resectable and borderline resectable pancreatic adenocarcinoma: PREP-01 study. J Gastroenterol. 2019;54(2):194–203.CrossRefGoogle Scholar
  41. 41.
    Vietsch EE, van Eijck CH, Wellstein A. Circulating DNA and micro-RNA in patients with pancreatic cancer. Pancreatic Disorders Ther. 2015;5:2.Google Scholar
  42. 42.
    Meng J, Zhang D, Pan N, et al. Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. PeerJ. 2015;3:e971.CrossRefGoogle Scholar
  43. 43.
    van der Ree MH, Jansen L, Kruize Z, et al. Plasma microRNA levels are associated with hepatitis B e antigen status and treatment response in chronic hepatitis B patients. J Infect Dis. 2017;215(9):1421–1429.CrossRefGoogle Scholar

Copyright information

© Society of Surgical Oncology 2019

Authors and Affiliations

  • Hirokazu Kubo
    • 1
  • Yukihiko Hiroshima
    • 1
  • Ryutaro Mori
    • 1
  • Yusuke Saigusa
    • 2
  • Takashi Murakami
    • 1
  • Yasuhiro Yabushita
    • 1
  • Yu Sawada
    • 1
  • Yuki Homma
    • 1
  • Takafumi Kumamoto
    • 1
  • Ryusei Matsuyama
    • 1
  • Itaru Endo
    • 1
    Email author
  1. 1.Department of Gastroenterological Surgery, Graduate School of MedicineYokohama City UniversityYokohamaJapan
  2. 2.Department of Biostatistics, School of MedicineYokohama City UniversityYokohamaJapan

Personalised recommendations