Annals of Surgical Oncology

, Volume 25, Issue 9, pp 2731–2738 | Cite as

Identification of microRNA Biomarkers of Response to Neoadjuvant Chemoradiotherapy in Esophageal Adenocarcinoma Using Next Generation Sequencing

  • Karen Chiam
  • George C. Mayne
  • David I. Watson
  • Richard J. Woodman
  • Tim F. Bright
  • Michael Z. Michael
  • Christos S. Karapetis
  • Tanya Irvine
  • Wayne A. Phillips
  • Richard Hummel
  • Tingting Wang
  • Letitia K. Pimlott
  • Shashikanth Marri
  • David StJ. Astill
  • Andrew R. Ruszkiewicz
  • Sarah K. Thompson
  • Damian J. HusseyEmail author
Gastrointestinal Oncology



Clinical trials report improved overall survival following neoadjuvant chemoradiotherapy in patients undergoing surgery for esophageal adenocarcinoma, with a 10–15% survival improvement. MicroRNAs (miRNAs) are small noncoding RNAs that are known to direct the behavior of cancers, including response to treatment. We investigated the ability of miRNAs to predict outcomes after neoadjuvant chemoradiotherapy.


Endoscopic biopsies from esophageal adenocarcinomas were obtained before neoadjuvant chemoradiotherapy and esophagectomy. miRNA levels were measured in the biopsies using next generation sequencing and compared with pathological response in the surgical resection, and subsequent survival. miRNA ratios that predicted pathological response were identified by Lasso regression and leave-one-out cross-validation. Association between miRNA ratio candidates and relapse-free survival was assessed using Kaplan–Meier analysis. Cox regression and Harrell’s C analyses were performed to assess the predictive performance of the miRNAs.


Two miRNA ratios (miR-4521/miR-340-5p and miR-101-3p/miR-451a) that predicted the pathological response to neoadjuvant chemoradiotherapy were found to be associated with relapse-free survival. Pretreatment expression of these two miRNA ratios, pretreatment tumor differentiation, posttreatment AJCC histopathological tumor regression grading, and posttreatment tumor clearance/margins were significant factors associated with survival in Cox regression analysis. Multivariate analysis of the two ratios together with pretherapy factors resulted in a risk prediction accuracy of 85% (Harrell’s C), which was comparable with the prediction accuracy of the AJCC treatment response grading (77%).


miRNA-ratio biomarkers identified using next generation sequencing can be used to predict disease free survival following neoadjuvant chemoradiotherapy and esophagectomy in patients with esophageal adenocarcinoma.



The authors thank Peter Devitt for assistance with sample identification, and members of the ACRF Cancer Genomics Facility including Joel Geoghegan, David Lawrence, Andreas Schreiber, and Anna Tsykin. Funding for this study was from NHMRC Project Grant APP595964, and a project grant awarded by Tour de Cure Australia.

Supplementary material

10434_2018_6626_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2050 kb)


  1. 1.
    Dubecz A, Solymosi N, Stadlhuber RJ, Schweigert M, Stein HJ, Peters JH. Does the incidence of adenocarcinoma of the esophagus and gastric cardia continue to rise in the twenty-first century? A SEER Database Analysis. J Gastrointest Surg. 2013;18(1):124–9.CrossRefGoogle Scholar
  2. 2.
    van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Donahue JM, Nichols FC, Li Z, et al. Complete pathologic response after neoadjuvant chemoradiotherapy for esophageal cancer is associated with enhanced survival. Ann Thorac Surg. 2009;87(2):392–8; discussion 398–9.Google Scholar
  4. 4.
    Klevebro F, Alexandersson von Dobeln G, Wang N, et al. A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction. Ann Oncol. 2016;27(4):660–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Shapiro J, van Lanschot JJB, Hulshof M, et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tang S, Wu WK, Li X, et al. Stratification of digestive cancers with different pathological features and survival outcomes by MicroRNA expression. Sci Rep. 2016;6:24466.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakai NS, Samia-Aly E, Barbera M, Fitzgerald RC. A review of the current understanding and clinical utility of miRNAs in esophageal cancer. Sem Cancer Biol. 2013;23(6 Pt B):512–21.Google Scholar
  11. 11.
    Skinner HD, Lee JH, Bhutani MS, et al. A validated miRNA profile predicts response to therapy in esophageal adenocarcinoma. Cancer. 2014;120(23):3635–41.CrossRefPubMedGoogle Scholar
  12. 12.
    Odenthal M, Hee J, Gockel I, et al. Serum microRNA profiles as prognostic/predictive markers in the multimodality therapy of locally advanced adenocarcinomas of the gastroesophageal junction. Int J Cancer. 2014;137(1):230–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Odenthal M, Bollschweiler E, Grimminger PP, et al. MicroRNA profiling in locally advanced esophageal cancer indicates a high potential of miR-192 in prediction of multimodality therapy response. Int J Cancer. 2013;133(10):2454–63.CrossRefPubMedGoogle Scholar
  14. 14.
    Lynam-Lennon N, Bibby BA, Mongan AM, et al. Low miR-187 expression promotes resistance to chemoradiation therapy in vitro and correlates with treatment failure in patients with esophageal adenocarcinoma. Mol Med. 2016;22.Google Scholar
  15. 15.
    Ko MA, Zehong G, Virtanen C, et al. MicroRNA expression profiling of esophageal cancer before and after induction chemoradiotherapy. Ann Thorac Surg. 2012;94(4):1094–102; discussion 1102–3.Google Scholar
  16. 16.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.Google Scholar
  17. 17.
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England). 2009;25(14):1754–60.Google Scholar
  18. 18.
    Risso D, Schwartz K, Sherlock G, Dudoit S. GC-content normalization for RNA-Seq data. BMC Bioinform. 2011;12:480.CrossRefGoogle Scholar
  19. 19.
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gordon GJ, Jensen RV, Hsiao LL, et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002;62(17):4963–7.PubMedGoogle Scholar
  21. 21.
    Munoz-Largacha JA, Gower AC, Sridhar P, et al. miRNA profiling of primary lung and head and neck squamous cell carcinomas: addressing a diagnostic dilemma. J Thoracic Cardiovasc Surg. 2017;154(2):714–27.CrossRefGoogle Scholar
  22. 22.
    Chiam K, Wang T, Watson DI, et al. Circulating serum exosomal miRNAs as potential biomarkers for esophageal adenocarcinoma. J Gastrointest Surg. 2015;19(7):1208–15.CrossRefPubMedGoogle Scholar
  23. 23.
    Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107(21):9546–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Li Z, Sillanpaa MJ. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik. 2012;125(3):419–35.Google Scholar
  25. 25.
    Jiang D, Huang J, Zhang Y. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Stat Methods Med Res. 2013;22(5):505–18.CrossRefPubMedGoogle Scholar
  26. 26.
    Meinshausen N, Bühlmann P. Stability selection. J R Statist Soc B. 2010;72(4):417–73.CrossRefGoogle Scholar
  27. 27.
    Blum Murphy M, Xiao L, Patel VR, et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: the association with baseline variables and survival-The University of Texas MD Anderson Cancer Center experience. Cancer. 2017;123(21):4106–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Duong C, Greenawalt DM, Kowalczyk A, et al. Pretreatment gene expression profiles can be used to predict response to neoadjuvant chemoradiotherapy in esophageal cancer. Ann Surg Oncol. 2007;14(12):3602–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Pan X, Wang R, Wang ZX. The potential role of miR-451 in cancer diagnosis, prognosis, and therapy. Mol Cancer Ther. 2013;12(7):1153–62.CrossRefPubMedGoogle Scholar
  31. 31.
    Riquelme I, Tapia O, Leal P, et al. miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3 K/AKT/mTOR pathway. Cell Oncol (Dordr). 2016;39(1):23–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Fukumoto I, Kinoshita T, Hanazawa T, et al. Identification of tumour suppressive microRNA-451a in hypopharyngeal squamous cell carcinoma based on microRNA expression signature. Br J Cancer. 2014;111(2):386–94.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu Z, Miao T, Feng T, et al. miR-451a Inhibited cell proliferation and enhanced tamoxifen sensitive in breast cancer via macrophage migration inhibitory factor. Biomed Res Int. 2015;2015:207684.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Su Z, Zhao J, Rong Z, Geng W, Wang Z. MiR-451, a potential prognostic biomarker and tumor suppressor for gastric cancer. Int J Clin Exp Pathol. 2015;8(8):9154–60.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gao Z, Liu R, Liao J, et al. Possible tumor suppressive role of the miR-144/451 cluster in esophageal carcinoma as determined by principal component regression analysis. Mol Med Rep. 2016;14(4):3805–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Wen J, Luo K, Liu H, et al. MiRNA expression analysis of pretreatment biopsies predicts the pathological response of esophageal squamous cell carcinomas to neoadjuvant chemoradiotherapy. Ann Surg. 2015;263(5):942–8.CrossRefGoogle Scholar
  37. 37.
    Raychaudhuri M, Bronger H, Buchner T, Kiechle M, Weichert W, Avril S. MicroRNAs miR-7 and miR-340 predict response to neoadjuvant chemotherapy in breast cancer. Breast Cancer Res Treat. 2017;162(3):511–21.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shi L, Chen ZG, Wu LL, et al. miR-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting Nrf2-dependent antioxidant pathway. Asian Pac J Cancer Prev. 2014;15(23):10439–44.CrossRefPubMedGoogle Scholar
  39. 39.
    Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Invest. 2014;94(3):350–58.CrossRefPubMedGoogle Scholar
  40. 40.
    Ogutu JO, Schulz-Streeck T, Piepho HP. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012;6 Suppl 2:S10.Google Scholar
  41. 41.
    Pritchard CC, Kroh E, Wood B, et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Philadelphia, Pa.). 2012;5(3):492–97.Google Scholar
  42. 42.
    Sarachana T, Dahiya N, Simhadri VL, et al. Small ncRNA expression-profiling of blood from Hemophilia A patients identifies miR-1246 as a potential regulator of factor 8 gene. PLoS ONE. 2015;10(7):e0132433.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Shah JS, Soon PS, Marsh DJ. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS ONE. 2016;11(4):e0153200.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Society of Surgical Oncology 2018

Authors and Affiliations

  • Karen Chiam
    • 1
    • 2
  • George C. Mayne
    • 2
    • 3
  • David I. Watson
    • 2
    • 3
  • Richard J. Woodman
    • 4
  • Tim F. Bright
    • 2
    • 3
  • Michael Z. Michael
    • 3
  • Christos S. Karapetis
    • 3
  • Tanya Irvine
    • 2
    • 3
  • Wayne A. Phillips
    • 5
    • 6
  • Richard Hummel
    • 2
    • 7
  • Tingting Wang
    • 2
    • 3
  • Letitia K. Pimlott
    • 3
  • Shashikanth Marri
    • 3
  • David StJ. Astill
    • 8
  • Andrew R. Ruszkiewicz
    • 9
  • Sarah K. Thompson
    • 10
  • Damian J. Hussey
    • 2
    • 3
    Email author
  1. 1.Cancer Research DivisionCancer Council New South WalesSydneyAustralia
  2. 2.Discipline of Surgery, College of Medicine and Public HealthFlinders University of South AustraliaAdelaideAustralia
  3. 3.Flinders Centre for Innovation in Cancer, College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
  4. 4.Flinders Centre for Epidemiology and Biostatistics, College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
  5. 5.Cancer Biology and Surgical Oncology LaboratoryPeter MacCallum Cancer CentreMelbourneAustralia
  6. 6.Sir Peter MacCallum Department of OncologyUniversity of MelbourneParkvilleAustralia
  7. 7.Department of SurgeryUniversity Hospital Schleswig-Holstein, Campus LübeckLübeckGermany
  8. 8.Department of Anatomical PathologyFlinders Medical CentreAdelaideAustralia
  9. 9.Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideAustralia
  10. 10.Department of SurgeryUniversity of Adelaide, Royal Adelaide HospitalAdelaideAustralia

Personalised recommendations