Annals of Surgical Oncology

, Volume 22, Issue 6, pp 1943–1949 | Cite as

Fast Track Ultrasound Protocol to Detect Acute Complications After Totally Implantable Venous Access Device Placement

  • Chun-Yu Wu
  • Feng-Sheng Lin
  • Yi-Chia Wang
  • Wei-Han Chou
  • Wen-Ying Lin
  • Wei-Zen Sun
  • Chih-Peng LinEmail author
Medical Oncology



The role of ultrasound examination in detection of postprocedure complications from totally implantable venous access devices (TIVAD) placement is still uncertain. In a cohort of 665 cancer outpatients, we assessed a quick ultrasound examination protocol in early detection of mechanical complications of catheterization.


Immediately after TIVAD placement, an ultrasound examination and chest radiography were performed to detect hemothorax, pneumothorax, and catheter malposition. The two methods were compared.


Of the 668 catheters inserted, 628 were placed into axillary veins and 40 into internal jugular veins. The ultrasound examination took 2.5 ± 1.1 min. No hemothorax was detected, and neither pneumothorax nor catheter malposition was evident among the 40 internal jugular vein cannulations. Ultrasound and chest radiography examinations of the 628 axillary vein cannulations detected five and four instances of pneumothorax, respectively. Ultrasound detected all six catheter malpositions into the internal jugular vein. However, ultrasound failed to detect two out of three malpositions in the contralateral brachiocephalic vein and one kinking inside the superior vena cava. Without revision surgery, the operating time was 34.1 ± 15.6 min. With revision surgery, the operating time was shorter when ultrasound detected catheter malposition than when chest radiography was used (96.8 ± 12.9 vs. 188.8 ± 10.3 min, p < 0.001).


Postprocedure ultrasound examination is a quick and sensitive method to detect TIVAD-related pneumothorax. It also precisely detects catheter malposition to internal jugular vein thus reduces time needed for revision surgery while chest radiography remains necessary to confirm catheter final position.


Pneumothorax Ultrasound Examination Internal Jugular Vein Superior Vena Cava Brachiocephalic Vein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financially supported by Department of Anesthesiology, National Taiwan University Hospital.


The authors declare no conflict of interest.

Supplementary material

10434_2014_4222_MOESM1_ESM.jpg (2.1 mb)
Supplementary Fig. 1a. A scan from the lateral supraclavicular fossa traces the catheter’s path from the subclavian vein into the brachiocephalic vein (JPG 2158 kb)
10434_2014_4222_MOESM2_ESM.jpg (1.9 mb)
Supplementary Fig. 1b. A scan from the medial supraclavicular fossa traces the catheter’s path from the subclavian vein into the brachiocephalic vein (JPG 1911 kb)
10434_2014_4222_MOESM3_ESM.jpg (872 kb)
Supplementary Fig. 2. Definition of final catheter tip location. A: Catheter tip located within 1–cm above or below caval-atrial junction. B: Catheter tip located within 2–cm below lower end of position A. C: Catheter tip located below position B but still within right atrium. D: Catheter tip located above upper end of position A but still with in SVC. Tip location at position A or B was considered optimal. Once the catheter tip located at position C or D was defined as suboptimal (JPG 872 kb)
10434_2014_4222_MOESM4_ESM.jpg (533 kb)
Supplementary Fig. 3. Chest radiography revealed a kinked catheter in the superior vena cava (JPG 534 kb)

Supplemental Video 1. Trace the catheter from subclavian vein to brachiocephalic vein and observe the catheter travel toward mediastinum (AVI 592 kb)

Supplemental Video 2. Trace from internal jugular vein to brachiocephalic vein to document that there is no catheter malposition (AVI 659 kb)

Supplemental Video 3. Document a catheter malposition to internal jugular vein (AVI 557 kb)


  1. 1.
    Biffi R, Toro A, Pozzi S, Di Carlo I. Totally implantable vascular access devices 30 years after the first procedure. What has changed and what is still unsolved? Support Care Cancer. In press.Google Scholar
  2. 2.
    Troianos CA, Hartman GS, Glas KE, et al. Special articles: guidelines for performing ultrasound guided vascular cannulation: recommendations of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2012;114:46–72.CrossRefPubMedGoogle Scholar
  3. 3.
    Rupp SM, Apfelbaum JL, Blitt C, et al. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology. 2012;116:539–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Lamperti M, Bodenham AR, Pittiruti M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intens Care Med. 2012;38:1105–17.CrossRefGoogle Scholar
  5. 5.
    Sekiguchi H, Tokita JE, Minami T, Eisen LA, Mayo PH, Narasimhan M. A prerotational, simulation-based workshop improves the safety of central venous catheter insertion: results of a successful internal medicine house staff training program. Chest. 2011;140:652–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Froehlich CD, Rigby MR, Rosenberg ES, et al. Ultrasound-guided central venous catheter placement decreases complications and decreases placement attempts compared with the landmark technique in patients in a pediatric intensive care unit. Crit Care Med. 2009;37:1090–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Milling TJ, Jr., Rose J, Briggs WM, et al. Randomized, controlled clinical trial of point-of-care limited ultrasonography assistance of central venous cannulation: the Third Sonography Outcomes Assessment Program (SOAP-3) trial. Crit Care Med. 2005;33:1764–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu SY, Ling Q, Cao LH, Wang J, Xu MX, Zeng WA. Real-time two-dimensional ultrasound guidance for central venous cannulation: a meta-analysis. Anesthesiology. 2013;118:361–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin CP, Wang YC, Lin FS, Huang CH, Sun WZ. Ultrasound-assisted percutaneous catheterization of the axillary vein for totally implantable venous access device. Eur J Surg Oncol. 2011;37:448–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Piette E, Daoust R, Denault A. Basic concepts in the use of thoracic and lung ultrasound. Curr Opin Anaesthesiol. 2013;26:20–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Orci LA, Meier RP, Morel P, Staszewicz W, Toso C. Systematic review and meta-analysis of percutaneous subclavian vein puncture versus surgical venous cutdown for the insertion of a totally implantable venous access device. Br J Surg. 2014;101:8–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Duszak R Jr, Bilal N, Picus D, Hughes DR, Xu BJ. Central venous access: evolving roles of radiology and other specialties nationally over two decades. J Am Coll Radiol. 2013;10:603–12.CrossRefPubMedGoogle Scholar
  13. 13.
    Wilkerson RG, Stone MB. Sensitivity of bedside ultrasound and supine anteroposterior chest radiographs for the identification of pneumothorax after blunt trauma. Acad Emerg Med. 2010;17:11–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Ueda K, Ahmed W, Ross AF. Intraoperative pneumothorax identified with transthoracic ultrasound. Anesthesiology. 2011;115:653–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Pikwer A, Baath L, Davidson B, Perstoft I, Akeson J. The incidence and risk of central venous catheter malpositioning: a prospective cohort study in 1619 patients. Anaesth Intensive Care. 2008;36:30–7.PubMedGoogle Scholar
  16. 16.
    Pawlik MT, Kutz N, Keyl C, Lemberger P, Hansen E. Central venous catheter placement: comparison of the intravascular guidewire and the fluid column electrocardiograms. Eur J Anaesthesiol. 2004;21:594–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Stas M, Mulier S, Pattyn P, Vijgen J, De Wever I. Peroperative intravasal electrographic control of catheter tip position in access ports placed by venous cut-down technique. Eur J Surg Oncol. 2001;27:316–20.CrossRefPubMedGoogle Scholar
  18. 18.
    Matsushima K, Frankel HL. Bedside ultrasound can safely eliminate the need for chest radiographs after central venous catheter placement: CVC sono in the surgical ICU (SICU). J Surg Res. 2010;163:155–61.CrossRefPubMedGoogle Scholar
  19. 19.
    Maury E, Guglielminotti J, Alzieu M, Guidet B, Offenstadt G. Ultrasonic examination: an alternative to chest radiography after central venous catheter insertion? Am J Respir Crit Care Med. 2001;164:403–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Vezzani A, Brusasco C, Palermo S, Launo C, Mergoni M, Corradi F. Ultrasound localization of central vein catheter and detection of postprocedural pneumothorax: an alternative to chest radiography. Crit Care Med. 2010;38:533–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Schutz JC, Patel AA, Clark TW, et al. Relationship between chest port catheter tip position and port malfunction after interventional radiologic placement. J Vasc Interv Radiol. 2004;15:581–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Vesely TM. Central venous catheter tip position: a continuing controversy. J Vasc Interv Radiol. 2003;14:527–34.CrossRefPubMedGoogle Scholar
  23. 23.
    Mandolfo S, Galli F, Costa S, Ravani P, Gaggia P, Imbasciati E. Factors influencing permanent catheter performance. J Vasc Access. 2001;2:106–9.PubMedGoogle Scholar
  24. 24.
    Reynolds N, McCulloch AS, Pennington CR, MacFadyen RJ. Assessment of distal tip position of long-term central venous feeding catheters using transesophageal echocardiology. JPEN . 2001;25:39–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Moore CL, Copel JA. Point-of-care ultrasonography. N Engl J Med. 2011;364:749–57.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Surgical Oncology 2014

Authors and Affiliations

  • Chun-Yu Wu
    • 1
  • Feng-Sheng Lin
    • 1
  • Yi-Chia Wang
    • 1
  • Wei-Han Chou
    • 1
  • Wen-Ying Lin
    • 1
    • 2
  • Wei-Zen Sun
    • 1
  • Chih-Peng Lin
    • 1
    • 2
    Email author
  1. 1.Department of AnesthesiologyNational Taiwan University HospitalTaipeiTaiwan
  2. 2.Department of OncologyNational Taiwan University HospitalTaipeiTaiwan

Personalised recommendations