Skip to main content

Advertisement

Log in

Excipients for Novel Inhaled Dosage Forms: An Overview

  • Mini-Review
  • Advances in Drug Delivery by Inhalation - Official Collection from AAPS Inhalation & Nasal Community (INC)
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes. While promising, inhaled delivery of therapeutics is often complex owing to factors encompassing mechanical barriers, chemical barriers, selection of inhalation device, and limited choice of dosage form excipients. There are very few excipients that are approved by the FDA for use in developing inhaled drug products. Depending upon the dosage form, and inhalation devices such as pMDIs, DPIs, and nebulizers, different excipients can be used to provide physical and chemical stability and to deliver the dose efficiently to the lungs. This review article focuses on discussing a variety of excipients that have been used in novel inhaled dosage forms as well as inhalation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Javadzadeh Y, Yaqoubi S. Therapeutic nanostructures for pulmonary drug delivery. In: Nanostructures for Drug Delivery. Elsevier; 2017 [cited 2022 Dec 6]. p. 619–38.

  2. Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther Deliv. 2017;8(8):647–61.

    Article  CAS  PubMed  Google Scholar 

  3. Patel B, Gupta N, Ahsan F. Barriers that inhaled particles encounter. In Werne, North Rhine-Westphalia, Germany.: International Society for Aerosols in Medicine, online publication,; 2015. p. 707–27.

  4. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications: Physiological factors affecting the effectiveness of inhaled drugs. Br J Clin Pharmacol. 2003;56(6):588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ngo C, Phan D, Vu G, Dao P, Phan P, Chu H, et al. Inhaler technique and adherence to inhaled medications among patients with acute exacerbation of chronic obstructive pulmonary disease in Vietnam. Int J Environ Res Public Health. 2019;16(2):185.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020;17(1):77–96.

    Article  CAS  PubMed  Google Scholar 

  7. Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou QT. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int J Pharm. 2018;544(1):222–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosière R, Amighi K, Wauthoz N. Nanomedicine-based inhalation treatments for lung cancer. In: Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer [Internet]. Elsevier; 2019. p. 249–68.

  9. Miller CJ. Inhaled medications. In: Small Animal Critical Care Medicine. Elsevier; 2015. p. 903–6.

  10. Geller DE. Comparing clinical features of the nebulizer, metered-dose inhaler, and dry powder inhaler. Respir Care. 2005 Oct;50(10):1313–21; discussion 1321-1322.

  11. Crompton GK. How to achieve good compliance with inhaled asthma therapy. Respir Med. 2004;98:S35-40.

    Article  PubMed  Google Scholar 

  12. Newman SP. Inhaler treatment options in COPD. Eur Respir Rev. 2005;14(96):102–8.

    Article  Google Scholar 

  13. Iwanaga T, Tohda Y, Nakamura S, Suga Y. The Respimat® Soft Mist Inhaler: Implications of drug delivery characteristics for patients. Clin Drug Investig. 2019;39(11):1021–30.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ibrahim M, Verma R, Garcia-Contreras L. Inhalation drug delivery devices: technology update. Med Devices Evid Res. 2015;8:131–9.

    Google Scholar 

  15. Stein SW, Sheth P, Hodson PD, Myrdal PB. Advances in metered dose inhaler technology: hardware development. AAPS PharmSciTech. 2014;15(2):326–38.

    Article  CAS  PubMed  Google Scholar 

  16. Lavorini F, Pistolesi M, Usmani OS. Recent advances in capsule-based dry powder inhaler technology. Multidiscip Respir Med. 2017;12(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miller CJ. Aerosolized medications. In: Small Animal Critical Care Medicine. Elsevier; 2009 [cited 2022 Dec 7]. p. 814–7.

  18. Sheth P, Myrdal PB. Excipients utilized for modifying pulmonary drug release. In: Smyth HDC, Hickey AJ, editors. Controlled Pulmonary Drug Delivery. New York, NY: Springer New York; 2011 [cited 2022 Dec 13]. p. 237–63.

  19. Zillen D, Beugeling M, Hinrichs WLJ, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci. 2021;56:101497.

    Article  CAS  Google Scholar 

  20. Depreter F, Pilcer G, Amighi K. Inhaled proteins: Challenges and perspectives. Int J Pharm. 2013;447(1–2):251–80.

    Article  CAS  PubMed  Google Scholar 

  21. Hamishehkar H, Rahimpour Y, Javadzadeh Y. The role of carrier in dry powder inhaler. In: Sezer AD, editor. Recent Advances in Novel Drug Carrier Systems. InTech; 2012 [cited 2022 Dec 8].

  22. Pilcer G, Amighi K. Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm. 2010;392(1–2):1–19.

    Article  CAS  PubMed  Google Scholar 

  23. Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RBH. Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: Effects of phospholipids. Int J Pharm. 2007;333(1–2):187–98.

    Article  CAS  PubMed  Google Scholar 

  24. Das J, Das S, Paul A, Samadder A, Bhattacharyya SS, Khuda-Bukhsh AR. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol Lett. 2014;225(3):454–66.

    Article  CAS  PubMed  Google Scholar 

  25. Emami J, Pourmashhadi A, Sadeghi H, Varshosaz J, Hamishehkar H. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol. 2015;20(7):791–800.

    Article  CAS  PubMed  Google Scholar 

  26. Huang YC, Li RY, Chen JY, Chen JK. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr Polym. 2016;138:114–22.

    Article  CAS  PubMed  Google Scholar 

  27. Muhsin MDA, George G, Beagley K, Ferro V, Wang H, Islam N. Effects of chemical conjugation of l -leucine to chitosan on dispersibility and controlled release of drug from a nanoparticulate dry powder inhaler formulation. Mol Pharm. 2016;13(5):1455–66.

    Article  CAS  PubMed  Google Scholar 

  28. RazaviRohani SS, Abnous K, Tafaghodi M. Preparation and characterization of spray-dried powders intended for pulmonary delivery of Insulin with regard to the selection of excipients. Int J Pharm. 2014;465(1–2):464–78.

    Article  CAS  Google Scholar 

  29. Patel P, Raval M, Manvar A, Airao V, Bhatt V, Shah P. Lung cancer targeting efficiency of silibinin loaded poly caprolactone /pluronic f68 inhalable nanoparticles: in vitro and in vivo study. Rai VK, editor. PLOS ONE. 2022;17(5):e0267257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang LJ, Xing B, Wu J, Xu B, Fang XL. Biodistribution in mice and severity of damage in rat lungs following pulmonary delivery of 9-nitrocamptothecin liposomes. Pulm Pharmacol Ther. 2008;21(1):239–46.

    Article  CAS  PubMed  Google Scholar 

  31. Murata M, Nakano K, Tahara K, Tozuka Y, Takeuchi H. Pulmonary delivery of elcatonin using surface-modified liposomes to improve systemic absorption: Polyvinyl alcohol with a hydrophobic anchor and chitosan oligosaccharide as effective surface modifiers. Eur J Pharm Biopharm. 2012;80(2):340–6.

    Article  CAS  PubMed  Google Scholar 

  32. Murata M, Yonamine T, Tanaka S, Tahara K, Tozuka Y, Takeuchi H. Surface modification of liposomes using polymer-wheat germ agglutinin conjugates to improve the absorption of peptide drugs by pulmonary administration. J Pharm Sci. 2013;102(4):1281–9.

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356(1–2):333–44.

    Article  CAS  PubMed  Google Scholar 

  34. Paranjpe M, Neuhaus V, Finke JH, Richter C, Gothsch T, Kwade A, et al. In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhal Toxicol. 2013;25(9):536–43.

    Article  CAS  PubMed  Google Scholar 

  35. Mussi SV, Silva RC, de Oliveira MC, Lucci CM, de Azevedo RB, Ferreira LAM. New approach to improve encapsulation and antitumor activity of doxorubicin loaded in solid lipid nanoparticles. Eur J Pharm Sci. 2013;48(1–2):282–90.

    Article  CAS  PubMed  Google Scholar 

  36. Gill KK, Nazzal S, Kaddoumi A. Paclitaxel loaded PEG5000–DSPE micelles as pulmonary delivery platform: formulation characterization, tissue distribution, plasma pharmacokinetics, and toxicological evaluation. Eur J Pharm Biopharm. 2011;79(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  37. Pardeike J, Weber S, Haber T, Wagner J, Zarfl HP, Plank H, et al. Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int J Pharm. 2011;419(1–2):329–38.

    Article  CAS  PubMed  Google Scholar 

  38. Asmawi AA, Salim N, Ngan CL, Ahmad H, Abdulmalek E, Masarudin MJ, et al. Excipient selection and aerodynamic characterization of nebulized lipid-based nanoemulsion loaded with docetaxel for lung cancer treatment. Drug Deliv Transl Res. 2019;9(2):543–54.

    Article  CAS  PubMed  Google Scholar 

  39. Zhu L, Li M, Dong J, Jin Y. Dimethyl silicone dry nanoemulsion inhalations: formulation study and anti-acute lung injury effect. Int J Pharm. 2015;491(1–2):292–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yang W, Chow KT, Lang B, Wiederhold NP, Johnston KP, Williams RO. In vitro characterization and pharmacokinetics in mice following pulmonary delivery of itraconazole as cyclodextrin solubilized solution. Eur J Pharm Sci. 2010;39(5):336–47.

    Article  CAS  PubMed  Google Scholar 

  41. Parvathaneni V, Elbatanony RS, Goyal M, Chavan T, Vega N, Kolluru S, et al. Repurposing bedaquiline for effective non-small cell lung cancer (NSCLC) therapy as inhalable cyclodextrin-based molecular inclusion complexes. Int J Mol Sci. 2021;22(9):4783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nieto-Orellana A, Li H, Rosiere R, Wauthoz N, Williams H, Monteiro CJ, et al. Targeted PEG-poly(glutamic acid) complexes for inhalation protein delivery to the lung. J Control Rel. 2019;316:250–62.

    Article  CAS  Google Scholar 

  43. Bodier-Montagutelli E, Mayor A, Vecellio L, Respaud R, Heuzé-Vourc’h N. Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opin Drug Deliv. 2018;15(8):729–36.

    Article  PubMed  Google Scholar 

  44. Research C for DE and. Inactive ingredients database download. FDA [Internet]. 2023. [cited 2023 Sep 20]. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/inactive-ingredients-database-download. Accessed 25 Aug 2023.

  45. Zhou QT, Tang P, Leung SSY, Chan JGY, Chan HK. Emerging inhalation aerosol devices and strategies: where are we headed? Adv Drug Deliv Rev. 2014;75:3–17.

    Article  CAS  PubMed  Google Scholar 

  46. Carvalho TC, McConville JT. The function and performance of aqueous aerosol devices for inhalation therapy. J Pharm Pharmacol. 2016;68(5):556–78.

    Article  CAS  PubMed  Google Scholar 

  47. Albasarah YY, Somavarapu S, Taylor KMG. Stabilizing protein formulations during air-jet nebulization. Int J Pharm. 2010;402(1–2):140–5.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma K, Somavarapu S, Colombani A, Govind N, Taylor KMG. Nebulised siRNA encapsulated crosslinked chitosan nanoparticles for pulmonary delivery. Int J Pharm. 2013;455(1–2):241–7.

    Article  CAS  PubMed  Google Scholar 

  49. Prabhakaran S, Abu-Hasan M, Hendeles L. Benzalkonium chloride: a bronchoconstricting preservative in continuous albuterol nebulizer solutions. Pharmacother J Hum Pharmacol Drug Ther. 2017;37(5):607–10.

    Article  CAS  Google Scholar 

  50. Martin AR, Finlay WH. Nebulizers for drug delivery to the lungs. Expert Opin Drug Deliv. 2015;12(6):889–900.

    Article  CAS  PubMed  Google Scholar 

  51. Egemnazarov B, Schermuly RT, Dahal BK, Elliott GT, Hoglen NC, Surber MW, et al. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction. Respir Res. 2010;11(1):81.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Beck-Broichsitter M, Kleimann P, Schmehl T, Betz T, Bakowsky U, Kissel T, et al. Impact of lyoprotectants for the stabilization of biodegradable nanoparticles on the performance of air-jet, ultrasonic, and vibrating-mesh nebulizers. Eur J Pharm Biopharm. 2012;82(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  53. Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. Mol Biomed. 2020;1(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Davis MD, Walsh BK, Dwyer ST, Combs C, Vehse N, Paget-Brown A, et al. Safety of an alkalinizing buffer designed for inhaled medications in humans. Respir Care. 2013;58(7):1226–32.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Johnson JC, Waldrep JC, Guo J, Dhand R. Aerosol delivery of recombinant human DNase I: in vitro comparison of a vibrating-mesh nebulizer with a jet nebulizer. Respir Care. 2008;53(12):1703–8.

    PubMed  Google Scholar 

  56. Buddiga P, Michael Kaliner. Use of metered dose inhalers, spacers, and nebulizers [Internet]. 2020. Available from: https://emedicine.medscape.com/article/1413366-overview. Accessed 15 Apr 2023.

  57. Emala CW. Pulmonary pharmacology. In: Pharmacology and Physiology for Anesthesia. Elsevier; 2019. p. 613–28.

  58. Kulkarni VS, Shaw C. Aerosols and nasal sprays. In: Essential Chemistry for Formulators of Semisolid and Liquid Dosages. Elsevier; 2016. p. 71–97.

  59. Mehta PP, Pawar AP, Mahadik KR, Kadam SS, Dhapte‐Pawar V. Dry powder coating techniques and role of force controlling agents in aerosol. In: Boddula R, Ahamed MI, Asiri AM, editors. Polymer Coatings, 1st ed. Wiley; 2020. p. 41–74.

  60. Pritchard JN. The Climate is changing for metered-dose inhalers and action is needed. Drug Des Devel Ther. 2020;14:3043–55.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li HY, Seville PC. Novel pMDI formulations for pulmonary delivery of proteins. Int J Pharm. 2010;385(1–2):73–8.

    Article  CAS  PubMed  Google Scholar 

  62. Srichana T, Chunhachaichana C, Suedee R, Sawatdee S, Changsan N. Oral inhalation of cannabidiol delivered from a metered dose inhaler to alleviate cytokine production induced by SARS-CoV-2 and pollutants. J Drug Deliv Sci Technol. 2022;76:103805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuzmov A, Minko T. Nanotechnology approaches for inhalation treatment of lung diseases. J Controlled Release. 2015;219:500–18.

    Article  CAS  Google Scholar 

  64. Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, et al. Nanotechnology-assisted metered-dose inhalers (MDIs) for high-performance pulmonary drug delivery applications. Pharm Res. 2022;39(11):2831–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levy ML, Carroll W, Izquierdo Alonso JL, Keller C, Lavorini F, Lehtimäki L. Understanding dry powder inhalers: key technical and patient preference attributes. Adv Ther. 2019;36(10):2547–57.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Momin MAM, Rangnekar B, Sinha S, Cheung CY, Cook GM, Das SC. Inhalable dry powder of bedaquiline for pulmonary tuberculosis: in vitro physicochemical characterization, antimicrobial activity and safety studies. Pharmaceutics. 2019;11(10):502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stewart IE, Lukka PB, Liu J, Meibohm B, Gonzalez-Juarrero M, Braunstein MS, et al. Development and characterization of a dry powder formulation for anti-tuberculosis drug spectinamide 1599. Pharm Res. 2019;36(9):136.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Luinstra M, Rutgers W, Van Laar T, Grasmeijer F, Begeman A, Isufi V, et al. Pharmacokinetics and tolerability of inhaled levodopa from a new dry-powder inhaler in patients with Parkinson’s disease. Ther Adv Chronic Dis. 2019;10:204062231985761.

    Article  Google Scholar 

  69. Dharmadhikari AS, Kabadi M, Gerety B, Hickey AJ, Fourie PB, Nardell E. Phase I, single-dose, dose-escalating study of inhaled dry powder capreomycin: a new approach to therapy of drug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(6):2613–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rahimpour Y, Hamishehkar H. Lactose engineering for better performance in dry powder inhalers. Adv Pharm Bull. 2012;2(2):183–7.

    PubMed  PubMed Central  Google Scholar 

  71. Sou T, Forbes RT, Gray J, Prankerd RJ, Kaminskas LM, McIntosh MP, et al. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. Powder Technol. 2016;287:248–55.

    Article  CAS  Google Scholar 

  72. Keil TWM, Feldmann DP, Costabile G, Zhong Q, da Rocha S, Merkel OM. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles. Eur J Pharm Biopharm. 2019;143:61–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee HJ, Kwon YB, Kang JH, Oh DW, Park ES, Rhee YS, et al. Inhaled bosentan microparticles for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. J Controlled Release. 2021;329:468–81.

    Article  CAS  Google Scholar 

  74. Anversa Dimer F, de Souza Carvalho-Wodarz C, Goes A, Cirnski K, Herrmann J, Schmitt V, et al. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine Nanotechnol Biol Med. 2020;24:102125.

    Article  CAS  Google Scholar 

  75. Derbali RM, Aoun V, Moussa G, Frei G, Tehrani SF, Del’Orto JC, et al. Tailored nanocarriers for the pulmonary delivery of levofloxacin against Pseudomonas aeruginosa : A Comparative Study. Mol Pharm. 2019;16(5):1906–16.

    Article  CAS  PubMed  Google Scholar 

  76. Deacon J, Abdelghany SM, Quinn DJ, Schmid D, Megaw J, Donnelly RF, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Rel. 2015;198:55–61.

    Article  CAS  Google Scholar 

  77. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep. 2018;8(1):3815.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  78. Gharse S, Fiegel J. Large porous hollow particles: lightweight champions of pulmonary drug delivery. Curr Pharm Des. 2016;22(17):2463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ubale RV, Shastri PN, Oettinger C, D’Souza MJ. Pulmonary administration of microparticulate antisense oligonucleotide (ASO) for the treatment of lung inflammation. AAPS PharmSciTech. 2018;19(4):1908–19.

    Article  CAS  PubMed  Google Scholar 

  80. Xiao Z, Zhuang B, Zhang G, Li M, Jin Y. Pulmonary delivery of cationic liposomal hydroxycamptothecin and 5-aminolevulinic acid for chemo-sonodynamic therapy of metastatic lung cancer. Int J Pharm. 2021;601:120572.

    Article  CAS  PubMed  Google Scholar 

  81. Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids. 2016;199:136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haworth CS, Bilton D, Chalmers JD, Davis AM, Froehlich J, Gonda I, et al. Inhaled liposomal ciprofloxacin in patients with non-cystic fibrosis bronchiectasis and chronic lung infection with Pseudomonas aeruginosa (ORBIT-3 and ORBIT-4): two phase 3, randomised controlled trials. Lancet Respir Med. 2019;7(3):213–26.

    Article  CAS  PubMed  Google Scholar 

  83. Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018;15(3):899–910.

    Article  PubMed  Google Scholar 

  84. Huang Z, Huang Y, Wang W, Fu F, Wang W, Dang S, et al. Relationship between particle size and lung retention time of intact solid lipid nanoparticle suspensions after pulmonary delivery. J Controlled Release. 2020;325:206–22.

    Article  CAS  Google Scholar 

  85. Nunes SS, Fernandes RS, Cavalcante CH, da Costa CI, Leite EA, Lopes SCA, et al. Influence of PEG coating on the biodistribution and tumor accumulation of pH-sensitive liposomes. Drug Deliv Transl Res. 2019;9(1):123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Elbardisy B, Boraie N, Galal S. Tadalafil nanoemulsion mists for treatment of pediatric pulmonary hypertension via nebulization. Pharmaceutics. 2022;14(12):2717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ngan CL, Asmawi AA. Lipid-based pulmonary delivery system: a review and future considerations of formulation strategies and limitations. Drug Deliv Transl Res. 2018;8(5):1527–44.

    Article  CAS  PubMed  Google Scholar 

  88. Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci. 2018;67(8):933–40.

    Article  CAS  PubMed  Google Scholar 

  89. Chrastina A, Welsh J, Borgström P, Baron VT. Propylene glycol caprylate-based nanoemulsion formulation of plumbagin: development and characterization of anticancer activity. Yu CH, editor. BioMed Res Int. 2022;10(2022):1–9.

    Article  Google Scholar 

  90. Chauhan G, Wang X, Yousry C, Gupta V. Scalable production and in vitro efficacy of inhaled erlotinib nanoemulsion for enhanced efficacy in non-small cell lung cancer (NSCLC). Pharmaceutics. 2023;15(3):996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SRP. Conjugation to poly(amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm. 2016;13(7):2363–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhong Q, Merkel OM, Reineke JJ, da Rocha SRP. Effect of the route of administration and PEGylation of poly(amidoamine) dendrimers on their systemic and lung cellular biodistribution. Mol Pharm. 2016;13(6):1866–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Khan OF, Zaia EW, Jhunjhunwala S, Xue W, Cai W, Yun DS, et al. Dendrimer-Inspired nanomaterials for the in vivo delivery of siRNA to lung vasculature. Nano Lett. 2015;15(5):3008–16.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Carol Yousry was supported by a US-Egypt Higher Education Initiative Graduate Scholarship from USAID. Mimansa Goyal was supported by a research assistantship from an industry research grant award to Vivek Gupta.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data collection, manuscript writing and revising the final version and all the versions of the manuscript.

Corresponding author

Correspondence to Vivek Gupta.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Philip Kwok, Francesca Buttini, Jenny Lam and Vivek Gupta.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousry, C., Goyal, M. & Gupta, V. Excipients for Novel Inhaled Dosage Forms: An Overview. AAPS PharmSciTech 25, 36 (2024). https://doi.org/10.1208/s12249-024-02741-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02741-w

Keywords

Navigation