PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles Downregulate PD-1 Expression by Macrophages and Inhibit Tumor Growth

PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles


The present study was designed to test the hypothesis that programmed cell death-1 (PD-1) siRNA can downregulate PD-1 expression in macrophages in culture and in tumor tissues in mice and inhibit tumor growth in a mouse model. PD-1 siRNA was encapsulated in solid lipid nanoparticles (SLNs), and the physical properties of the resultant SLNs were characterized. The ability of the PD-1 siRNA-SLNs to downregulate PD-1 expression was confirmed in J774A.1 macrophages in culture and in tumor tissues in mice. Moreover, the antitumor activity of the PD-1 siRNA-SLNs was evaluated in a mouse model. The PD-1 siRNA-SLNs were roughly spherical, and their particle size, polydispersity index, and zeta potential were 141 ± 5 nm, 0.17 ± 0.02, and 20.7 ± 4.7 mV, respectively, with an siRNA entrapment efficiency of 98.9%. The burst release of the PD-1 siRNA from the SLNs was minimal. The PD-1 siRNA-SLNs downregulated PD-1 expression on J774A.1 macrophage cell surface as well as in macrophages in B16-F10 tumors pre-established in mice. In mice with pre-established B16-F10 tumors, the PD-1 siRNA-SLNs significantly inhibited the tumor growth, as compared with siRNA-SLNs prepared with non-functional, negative control siRNA. In conclusion, the PD-1 siRNA-SLNs inhibited tumor growth, likely related to their ability to downregulate PD-1 expression by tumor-associated macrophage (TAMs).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Salmaninejad A, Valilou SF, Shabgah AG, Aslani S, Alimardani M, Pasdar A, et al. PD-1/PD-L1 pathway: basic biology and role in cancer immunotherapy. J Cell Physiol. 2019;234(10):16824–37. https://doi.org/10.1002/jcp.28358.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18(1):10. https://doi.org/10.1186/s12943-018-0928-4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    LaFleur MW, Muroyama Y, Drake CG, Sharpe AH. Inhibitors of the PD-1 pathway in tumor therapy. J Immunol. 2018;200(2):375–83. https://doi.org/10.4049/jimmunol.1701044.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Cui C, Yu B, Jiang Q, Li X, Shi K, Yang Z. The roles of PD-1/PD-L1 and its signalling pathway in gastrointestinal tract cancers. Clin Exp Pharmacol Physiol. 2019;46(1):3–10. https://doi.org/10.1111/1440-1681.13028.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Sun X, Zhang T, Li M, Yin L, Xue J. Immunosuppressive B cells expressing PD-1/PD-L1 in solid tumors: a mini review. Qjm. 2019. https://doi.org/10.1093/qjmed/hcz162.

  6. 6.

    Cai J, Qi Q, Qian X, Han J, Zhu X, Zhang Q, et al. The role of PD-1/PD-L1 axis and macrophage in the progression and treatment of cancer. J Cancer Res Clin Oncol. 2019;145(6):1377–85. https://doi.org/10.1007/s00432-019-02879-2.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mariotti FR, Petrini S, Ingegnere T, Tumino N, Besi F, Scordamaglia F, et al. PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncoimmunology. 2019;8(3):1557030. https://doi.org/10.1080/2162402x.2018.1557030.

    Article  PubMed  Google Scholar 

  8. 8.

    Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. https://doi.org/10.1186/s40425-018-0316-z.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Shergold AL, Millar R, Nibbs RJB. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res. 2019;145:104258. https://doi.org/10.1016/j.phrs.2019.104258.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Killock D. Immunotherapy: macrophages hijack anti-PD-1 therapy. Nat Rev Clin Oncol. 2017;14(7):394. https://doi.org/10.1038/nrclinonc.2017.79.

    Article  PubMed  Google Scholar 

  11. 11.

    Simon B, Harrer DC, Schuler-Thurner B, Schaft N, Schuler G, Dorrie J, et al. The siRNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Exp Dermatol. 2018;27(7):769–78. https://doi.org/10.1111/exd.13678.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Burvenich IJG, Parakh S, Parslow AC, Lee ST, Gan HK, Scott AM. Receptor occupancy imaging studies in oncology drug development. AAPS J. 2018;20(2):43. https://doi.org/10.1208/s12248-018-0203-z.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Yoo B, Jordan VC, Sheedy P, Billig AM, Ross A, Pantazopoulos P, et al. RNAi-mediated PD-L1 inhibition for pancreatic cancer immunotherapy. Sci Rep. 2019;9(1):4712. https://doi.org/10.1038/s41598-019-41251-9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. https://doi.org/10.1038/nature22396.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Bucana CD, Fabra A, Sanchez R, Fidler IJ. Different patterns of macrophage infiltration into allogeneic-murine and xenogeneic-human neoplasms growing in nude mice. Am J Pathol. 1992;141(5):1225–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Cao Q, Yan X, Chen K, Huang Q, Melancon MP, Lopez G, et al. Macrophages as a potential tumor-microenvironment target for noninvasive imaging of early response to anticancer therapy. Biomaterials. 2018;152:63–76. https://doi.org/10.1016/j.biomaterials.2017.10.036.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Daldrup-Link HE, Golovko D, Ruffell B, Denardo DG, Castaneda R, Ansari C, et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011;17(17):5695–704. https://doi.org/10.1158/1078-0432.CCR-10-3420.

    CAS  Article  Google Scholar 

  18. 18.

    Erel-Akbaba G, Carvalho LA, Tian T, Zinter M, Akbaba H, Obeid PJ, et al. Radiation-induced targeted nanoparticle-based gene delivery for brain tumor therapy. ACS Nano. 2019;13(4):4028–40.

    CAS  Article  Google Scholar 

  19. 19.

    Wu Y, Gu W, Li L, Chen C, Xu ZP. Enhancing PD-1 gene silence in T lymphocytes by comparing the delivery performance of two inorganic nanoparticle platforms. Nanomaterials (Basel). 2019;9(2). https://doi.org/10.3390/nano9020159.

  20. 20.

    Ligtenberg MA, Pico de Coana Y, Shmushkovich T, Yoshimoto Y, Truxova I, Yang Y, et al. Self-delivering RNAi targeting PD-1 improves tumor-specific T cell functionality for adoptive cell therapy of malignant melanoma. Mol Ther 2018;26(6):1482–1493. https://doi.org/10.1016/j.ymthe.2018.04.015.

  21. 21.

    Wu Y, Gu W, Li J, Chen C, Xu ZP. Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine (Lond). 2019;14(8):955–67. https://doi.org/10.2217/nnm-2018-0237.

    CAS  Article  Google Scholar 

  22. 22.

    Kwak SY, Lee S, Han HD, Chang S, Kim KP, Ahn HJ. PLGA nanoparticles codelivering siRNAs against programmed cell death protein-1 and its ligand gene for suppression of colon tumor growth. Mol Pharm. 2019;16:4940–53. https://doi.org/10.1021/acs.molpharmaceut.9b00826.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Zhao T, Wei T, Guo J, Wang Y, Shi X, Guo S, et al. PD-1-siRNA delivered by attenuated Salmonella enhances the antimelanoma effect of pimozide. Cell Death Dis. 2019;10(3):164. https://doi.org/10.1038/s41419-019-1418-3.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zhao T, Feng Y, Guo M, Zhang C, Wu Q, Chen J, et al. Combination of attenuated Salmonella carrying PD-1 siRNA with nifuroxazide for colon cancer therapy. J Cell Biochem. 2020;121(2):1973–85. https://doi.org/10.1002/jcb.29432.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Celec P, Gardlik R. Gene therapy using bacterial vectors. Front Biosci (Landmark Ed). 2017;22:81–95. https://doi.org/10.2741/4473.

  26. 26.

    Kulkarni JA, Witzigmann D, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–44. https://doi.org/10.1021/acs.accounts.9b00368.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14(12):1084–7. https://doi.org/10.1038/s41565-019-0591-y.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Aldayel AM, O'Mary HL, Valdes SA, Li X, Thakkar SG, Mustafa BE, et al. Lipid nanoparticles with minimum burst release of TNF-alpha siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J Control Release. 2018;283:280–9. https://doi.org/10.1016/j.jconrel.2018.05.035.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, et al. Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell. 2015;162(6):1242–56. https://doi.org/10.1016/j.cell.2015.08.052.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Hussein MR. Tumour-associated macrophages and melanoma tumourigenesis: integrating the complexity. Int J Exp Pathol. 2006;87(3):163–76. https://doi.org/10.1111/j.1365-2613.2006.00478.x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhu S, Wonganan P, Lansakara PD, O'Mary HL, Li Y, Cui Z. The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials. 2013;34(9):2327–39. https://doi.org/10.1016/j.biomaterials.2012.11.053.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–26. https://doi.org/10.1146/annurev-physiol-021119-034627.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Fennelly C, Amaravadi RK. Lysosomal biology in cancer. Methods Mol Biol. 2017;1594:293–308. https://doi.org/10.1007/978-1-4939-6934-0_19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Dhupkar P, Gordon N, Stewart J, Kleinerman ES. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018;7(6):2654–64. https://doi.org/10.1002/cam4.1518.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pahl JH, Kwappenberg KM, Varypataki EM, Santos SJ, Kuijjer ML, Mohamed S, et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-gamma. J Exp Clin Cancer Res. 2014;33:27. https://doi.org/10.1186/1756-9966-33-27.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hsu J, Hodgins JJ, Marathe M, Nicolai CJ, Bourgeois-Daigneault MC, Trevino TN, et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J Clin Invest. 2018;128(10):4654–68. https://doi.org/10.1172/jci99317.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


This work was supported in part by an Egyptian Government Scholarship with bench fees (MSH), the Mannino Fellowship in Pharmacy at UT Austin (ZC), a UT Austin-Portugal CoLab project (ZC), and Via Therapeutics, LLC (through NIH R43AR074360 to JJK).

Author information



Corresponding author

Correspondence to Zhengrong Cui.

Ethics declarations

Conflict of Interest

ZC declares conflict of interest with Via Therapeutics, LLC, which has been reviewed and approved by UT Austin in accordance with its policy on objectivity in research.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanafy, M.S., Hufnagel, S., Trementozzi, A.N. et al. PD-1 siRNA-Encapsulated Solid Lipid Nanoparticles Downregulate PD-1 Expression by Macrophages and Inhibit Tumor Growth. AAPS PharmSciTech 22, 60 (2021). https://doi.org/10.1208/s12249-021-01933-y

Download citation


  • PD-1
  • siRNA
  • nanoparticles
  • macrophages
  • tumor