Pluronic-Coated Biogenic Gold Nanoparticles for Colon Delivery of 5-Fluorouracil: In vitro and Ex vivo Studies

A Correction to this article is available

This article has been updated


The aim of the study was to prepare 5-fluorouracil (5-FU)-loaded biogenic gold nanoparticles with pluronic-based coating (PFGNPs), their optimization (full factorial predicted OBPN-1) and in vitro-ex vivo evaluation. Several formulations were prepared, selected for optimization using Design Expert®, and compared for morphology, 5-FU release kinetics, compatibility, cell line toxicity, in vitro hemocompatibility, and ex vivo intestinal permeation across the rat duodenum, jejunum, and ileum. The pluronic-coated 5-FU-carrying GNPs were spherical, 29.11–178.21 nm in diameter, with a polydispersity index (PDI) range of 0.191–292, and a zeta potential (ZP) range of 11.19–29.21 (-mV). The optimized OBPN-1 (desirability = 0.95) demonstrated optimum size (175.1 nm), %DL as 73.8%, ZP as 21.7 mV, % drug release (DR) as 75.7%, and greater cytotoxicity (viability ~ 8.9%) against the colon cancer cell lines than 5-FU solution (~ 24.91%), and less hemocompatibility. Moreover, OBPN-1 exhibited 4.5-fold permeation across the rat jejunum compared with 5-FU solution. Thus, the PFGNPs exhibit high DL capacity, sustained delivery, hemocompatibility, improved efficacy, and enhanced permeation profiles compared with 5-FU solution and several other NPs preparations suggesting it is a promising formulation for effective colon cancer control with reduced side effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Change history


  1. 1.

    World Health Organization (WHO) (2018)

  2. 2.

    Torre LA, Siegel RL, Jemal AL. Lung cancer statistics: in lung cancer and personalized medicine. Springer Cham. 2016;893:1–9.

    Google Scholar 

  3. 3.

    Daga A, Ansari A, Patel S, Mirza S, Rawal R, Umrania V. Current drugs and drug targets in non-small cell lung cancer: limitations and opportunities. Asian Pac J Cancer Prev. 2015;16(10):4147–56.

    PubMed  Google Scholar 

  4. 4.

    Guo T, Holzberg TR, Lim CG, Gao F, Gargava A, Trachtenberg JE, et al. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution. Biofabrication. 2017;9(2):12–23.

    Google Scholar 

  5. 5.

    Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine. 2017;7(4):23.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol. 2016;78(3):447–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chaudhary S, Umar A, Mehta SK. Surface functionalized selenium nanoparticles for biomedical applications. J Biomed Nanotechnol. 2014;10(10):3004–42.

    CAS  PubMed  Google Scholar 

  8. 8.

    Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, et al. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano. 2012;6(8):6578–91.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ohya Y, Takei T, Kobayashi H, Ouchi T. Release behaviour of 5-fluorouracil from chitosan-gel microspheres immobilizing 5-fluorouracil derivative coated with polysaccharides and their cell specific recognition. J Microencapsul. 1993;10(1):1–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Wen H, Jung H, Li X. Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J. 2015;17(6):1327–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gentile P, Chiono V, Carmagnola I, Hatton P. An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles enhance 5-fluorouracil anticancer efficacy against colorectal cancer cells. Int J Pharm. 2016;513(1–2):648–58.

    CAS  PubMed  Google Scholar 

  13. 13.

    Alakhov V, Kabanov A. Block copolymer-based formulations of doxorubicin efective against drug resistant tumours, in Biomedical Polymers and Polymer Therapeutics, E. Chiellini, J. Sunamoto, C. Migliaresi, R. M. Ottenbrite, and D. Cohn, Eds., pp. 121–137, Kluwer Academic, New York, NY, USA, 2002.

  14. 14.

    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82(2–3):189–212.

    CAS  Google Scholar 

  15. 15.

    Alakhov VY, Moskaleva EY, Batrakova EV, Kabanov AV. Hypersensitization of multidrug resistant human ovarian carcinoma cells by pluronic P85 block copolymer. Bioconjug Chem. 1996;7(2):209–16.

    CAS  PubMed  Google Scholar 

  16. 16.

    Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers. 2018;10(1):1–14.

    Google Scholar 

  17. 17.

    Martins C, Sousa F, Araujo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7(1):1701035.

    CAS  Article  Google Scholar 

  18. 18.

    Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. J Control Release. 2003;86(1):33–48.

    CAS  PubMed  Google Scholar 

  19. 19.

    Lee SY, Cho HJ. Dopamine-conjugated poly (lactic-co-glycolic acid) nanoparticles for protein delivery to macrophages. J Colloid Interface Sci. 2017;490:391–400.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cleland JL, Mac A, Boyd B, Yang J, Duenas ET, Yeung D, et al. The stability of recombinant human growth hormone in poly (lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res. 1997;14(4):420–5.

    CAS  PubMed  Google Scholar 

  21. 21.

    Dai J, Long W, Liang Z, Wen L, Yang F, Chen G. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev Ind Pharm. 2018;44(1):89–98.

    CAS  PubMed  Google Scholar 

  22. 22.

    Bailey BA, Desai KG, Ochyl LJ, Ciotti SM, Moon JJ, Schwendeman SP. Self-encapsulating poly (lactic-co-glycolic acid) (PLGA) microspheres for intranasal vaccine delivery. Mol Pharm. 2017;14(9):3228–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: linking particle properties to immunogenicity. Hum Vaccines Immunother. 2016;2(4):1056–69.

    Google Scholar 

  24. 24.

    Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.

    CAS  PubMed  Google Scholar 

  25. 25.

    Safwat MA, Soliman GM, Sayed D, Attia MA. Gold nanoparticles capped with benzalkonium chloride and poly (ethylene imine) for enhanced loading and skin permeability of 5-fluorouracil. Drug Dev Ind Pharm. 2017;43(11):1780–91.

    CAS  PubMed  Google Scholar 

  26. 26.

    Safwat MA, Soliman GM, Sayed D, Attia MA. Fluorouracil-loaded gold nanoparticles for the treatment of skin cancer: development, in vitro characterization, and in vivo evaluation in a mouse skin cancer xenograft model. Mol Pharm. 2018;15(6):2194–205.

    CAS  PubMed  Google Scholar 

  27. 27.

    Mohammad O, Faisal SM, Ahmad N, Rauf MA, Umar MS, Mujeeb AA, Pachauri P, Ahmed A, Kashif M, Ajmal M, Zubair S. Bio-mediated synthesis of 5-FU based nanoparticles employing orange fruit juice: a novel drug delivery system to treat skin fibrosarcoma in model animals. Sci Rep. 2019; 23;9(1):12288.

  28. 28.

    Singh S, Vidyarthi AS, Nigam VK, Dev A. Extracellular facile biosynthesis, characterization and stability of gold nanoparticles by Bacillus licheniformis. Artif Cells Nanomed Biotechnol. 2014:1–7.

  29. 29.

    Sharma N, Pinnaka AK, Raje M, FNU A, Bhattacharyya MS, Choudhury AR. Exploitation of marine bacteria for production of gold nanoparticles. Microb Cell Factories. 2012;11:86.

    CAS  Google Scholar 

  30. 30.

    Murawala P, Tirmale A, Shiras A, Prasad BLV. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells. Mater Sci Eng C. 2014;34:158–67.

    CAS  Google Scholar 

  31. 31.

    Zhang Z, Wang X, Li B, Hou Y, Yang J, Yi L. Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations. Drug Deliv. 2018;25(1):166–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Ahmad N, Alam MA, Ahmad R, Naqvi AA, Ahmad FJ. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif Cells Nanomed Biotechnol. 2018;46(2):432–46.

    CAS  PubMed  Google Scholar 

  33. 33.

    Pan X, Zhang X, Sun H, Zhang J, Yan M, Zhang H. Autophagy inhibition promotes 5-fluorouraci-induced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells. PLoS One. 2013;8(2):e56679.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Hussain A, Haque MW, Singh SK, Ahmed FJ. Optimized permeation enhancer for topical delivery of 5-fluorouracil-loaded elastic liposome using design expert: part II. Drug Deliv. 2015;23(4):1242–53.

    PubMed  Google Scholar 

  35. 35.

    Dash V, Mishra SK, Singh M, Goyal AK, Rath G. Release kinetic studies of aspirin microcapsules from ethyl cellulose, cellulose acetate phthalate and their mixtures by emulsion solvent evaporation method. Sci Pharm. 2010;78(1):93–102.

    CAS  PubMed  Google Scholar 

  36. 36.

    Hussain A, Altamimi MA, Alshehri S, Imam SA, Shakeel F, Singh SK. Novel approach for transdermal delivery of rifampicin to induce synergistic anti-mycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int J Nanomedicine. 2020;15:1073–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hussain A, Singh SK, Singh N, Verma PRP. In vitro-in vivo in-silico simulation studies of anti-tubercular drugs doped with self-nanoemulsifying drug delivery system. RSC Adv. 2016;6:93147–61.

    CAS  Google Scholar 

  38. 38.

    Ruan LP, Chen S, Yu BY, Zhu DN, Cordell GA, Qiu SX. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur J Med Chem. 2006;41(5):605–10.

    CAS  PubMed  Google Scholar 

  39. 39.

    Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, et al. Physicochemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci Rep. 2016;6:1–14.

    CAS  Google Scholar 

  40. 40.

    Newton DW, Kluza RB. pKa values of medicinal compounds in pharmacy practice. Ann Pharmacother. 1978;12:546–54.

    CAS  Google Scholar 

  41. 41.

    Arias J. Novel strategies to improve the anticancer action of 5-fluorouracil by using drug delivery systems. Molecules. 2008;13:2340–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ortiz R, Prados J, Melguizo C, Arias JL, Ruiz MA, Álvarez PJ, et al. 5-fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int J Nanomedicine. 2012;7:95–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5:1275–9.

    CAS  PubMed  Google Scholar 

  44. 44.

    Sun SB, Liu P, Shao FM, Miao QL. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int J Clin Exp Med. 2015;8(10):19670–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Matai I, Sachdev A, Gopinath P. Multicomponent 5-fluorouracil loaded PAMAM stabilized-silver nanocomposites synergistically induce apoptosis in human cancer cells. Biomater Sci. 2015;3(3):457–68.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kim D, Jeong YY, Jon S. A drug-loaded aptamer - gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4:3689–96.

    CAS  PubMed  Google Scholar 

  47. 47.

    Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–22.

    CAS  PubMed  Google Scholar 

  48. 48.

    Jain N, Bhargava A, Panwar J. Enhanced photocatalytic degradation of methylene blue using biologically synthesized “proteincapped” ZnO nanoparticles. Chem Eng. 2014; J 243: 549–555.

  49. 49.

    Giteau A, Venier-Julienne MC, Aubert-Pou¨essel A, Benoit JP How to achieve sustained and complete protein release from PLGA-based microparticles Int J Pharm 2008; 350: 14–26.

  50. 50.

    Udofot O, Affram K, Bridg’ette Israel EA. Cytotoxicity of 5-fluorouracil-loaded pH-sensitive liposomal nanoparticles in colorectal cancer cell lines. Integr Cancer Sci Ther. 2015;2:245.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JH. Nanoparticle size reduction during laser ablation in aqueous solutions of cyclodextrins, lasers and applications in science and engineering. Int Soc Opt Eng. 2004:84–92.

  52. 52.

    Bonengel S, Bernkop-Schnürch A. Thiomers—from bench to market. J Control Release. 2014;195:120–9.

    CAS  PubMed  Google Scholar 

  53. 53.

    Bhattacharjee S. DLS and zeta potential—what they are and what they are not? J Control Release. 2016;235:337–51.

    CAS  PubMed  Google Scholar 

  54. 54.

    Jeong B. Injectable biodegradable materials. In:Injectable biodegradable materials. Injectable Biomaterials: Woodhead Publishing Limited; 2011. p. 323–237.

    Google Scholar 

  55. 55.

    Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified Fluocinolone Acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS PharmSciTech. 2015;17(5):1159–72.

    PubMed  Google Scholar 

  56. 56.

    Leelakanok N, Geary S, Salem A. Fabrication and use of PLGA-based formulations designed for modified release of 5-fluorouracil. J Pharm Sci. 2018;107(2):513–28.

    CAS  PubMed  Google Scholar 

  57. 57.

    Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alshehri S, Elsamam T, Alomar FA, Akhtar S, Fahmi UA, Alhakamy NAA, Alshammari MS. Formulation of amorphous ternary solid dispersion of dapagliflozin using PEG 6000 and poloxamer 188: Solid-state characterization, ex vivo study, and molecular simulation assessment. Drug Development and Industrial Pharmacy. 2020: early online, doi:

  58. 58.

    Singh R, Kesharwani P, Mehra NK, Singh S, Banerjee S, Jain NK. Development and characterization of folate anchored Saquinavir entrapped PLGA nanoparticles for anti-tumor activity. Drug Dev Ind Pharm. 2015;41(11):1888–901.

    CAS  PubMed  Google Scholar 

  59. 59.

    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. PNAS. 2003;100:13549–54.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kuroda K, Caputo GA. Antimicrobial polymers as synthetic mimics of host-defense peptides. WIREs Nanomed Nanobiotechnol. 2012;5:49–66.

    Google Scholar 

  61. 61.

    Omura K. Clinical implications of dihydropyrimidine dehydrogenase (DPD) activity in 5-FU-based chemotherapy: mutations in the DPD gene, and DPD inhibitory fluoropyrimidines. Int J Clin Oncol. 2003;8:132–8.

    CAS  PubMed  Google Scholar 

  62. 62.

    Buur A, Trier L, Magnusson C, Artursson P. Permeability of 5-fluorouracil and prodrugs in caco-2 cell monolayers. Int J Pharm. 1996;29:223–31.

    Google Scholar 

  63. 63.

    Artursson P, Ungell AL, Lofroth E. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm Res. 1993;10:1123–9.

    CAS  PubMed  Google Scholar 

  64. 64.

    McCartney F, Rosa M, Brayden DJ. Evaluation of sucrose Laurate as an intestinal permeation enhancer for macromolecules: ex vivo and in vivo studies. Pharmaceutics. 2019;11:565.

    CAS  Article  PubMed Central  Google Scholar 

  65. 65.

    McCartney F, Janninb V, Chevrier S, Boulghobra H, Hristova DR, Ritter N, et al. Labrasol® is an efficacious intestinal permeation enhancer across rat intestine: ex vivo and in vivo rat studies. J Control Release. 2019;310:115–26.

    CAS  PubMed  Google Scholar 

Download references


The authors extend their appreciation to the Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia for funding this research work through the project number (IFKSURG-1441-443).

Author information



Corresponding authors

Correspondence to Wael A. Mahdi or Afzal Hussain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: During production, a type-setting error occurred in the acknowledgment section. The project number published was (IFKSURG-1442-443). The correct project number is (IFKSURG-1441-443).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahdi, W.A., Hussain, A., Ramzan, M. et al. Pluronic-Coated Biogenic Gold Nanoparticles for Colon Delivery of 5-Fluorouracil: In vitro and Ex vivo Studies. AAPS PharmSciTech 22, 64 (2021).

Download citation

Key Words

  • biogenic gold nanoparticles
  • Design Expert®
  • colon cancer cell lines
  • hemolysis assessment
  • ex vivo permeation profiles