AAPS PharmSciTech

, 20:160 | Cite as

Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems for Cancer Treatment

  • Rachna Nayak
  • Igor Meerovich
  • Alekha K. DashEmail author
Review Article Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems
Part of the following topical collections:
  1. Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems


Over the last several decades, nanoparticulate delivery systems have emerged as advanced drug and gene delivery tools for cancer therapy. However, their translation into clinical use still poses major challenges. Even though many innovative nanoparticulate approaches have shown very positive results both in vitro and in vivo, few of them have found a place in clinical practice. Possible factors responsible for the existing gap in the translation of nanomedicine to clinical practice may include oversimplification of enhanced permeability and retention effect, lack of correlation between the in vivo animal data vs their translation in human, and challenging multiple biological steps experienced during systemic delivery of nanomedicine. Understanding these challenges and coming up with solutions to overcome them is an important step in effective translation of nanomedicine into clinical practice. This review focuses on advancements in the field of nanomedicine used for anti-cancer therapy, including passive targeting, active targeting, and stimuli-controlled delivery. The review further reveals some of the challenges that are currently faced by pharmaceutical scientists in translation of nanomedicine; these include lack of adequate models for preclinical testing that can predict efficacy in humans, absence of appropriate regulatory guidelines for their approval processes, and difficulty in scale-up of the manufacturing of nanodrug delivery systems. A better understanding of these challenges will help us in filling the gap between the bench and bedside in cancer therapy.


nanomedicine nanocarriers translational cancer drug delivery targeted drug delivery 



  1. 1.
    Wang X. A new vision of definition, commentary, and understanding in clinical and translational medicine. Clin Transl Med. 2012;1(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ashikhmin YI. Translational medicine: new hope or artful design of big pharma. Pharmacogenet Pharmacogenomics. 2015;1:40–4.Google Scholar
  3. 3.
    Liu D, Yang F, Xiong F, Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol. 2018;9(5):1000519.CrossRefGoogle Scholar
  5. 5.
    Rigacci L, Mappa S, Nassi L, Alterini R, Carrai V, Bernardi F, et al. Liposome-encapsulated doxorubicin in combination with cyclophosphamide, vincristine, prednisone and rituximab in patients with lymphoma and concurrent cardiac diseases or pre-treated with anthracyclines. Hematol Oncol. 2007;25(4):198–203. Scholar
  6. 6.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(4):12.CrossRefGoogle Scholar
  7. 7.
    Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. (ahead of print).
  8. 8.
    Drulis-Kawa Z, Dorotkiewicz-Jach A. Liposomes as delivery systems for antibiotics. Int J Pharm. 2010;387(1–2):187–98.PubMedCrossRefGoogle Scholar
  9. 9.
    Felnerova D, Viret J-F, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15(6):518–29.PubMedCrossRefGoogle Scholar
  10. 10.
    Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy-problems, solutions, and prospects. Microcirculation. 2016;23(3):173–82. Scholar
  11. 11.
    Lindner LH, Hossann M, Vogeser M, Teichert N, Wachholz K, Eibl H, et al. Dual role of hexadecylphosphocholine (miltefosine) in thermosensitive liposomes: active ingredient and mediator of drug release. J Control Release. 2008;125(2):112–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Carter KA, Shao S, Hoopes MI, Luo D, Ahsan B, Grigoryants VM, et al. Porphyrin-phospholipid liposomes permeabilized by near-infrared light. Nat Commun. 2014;5:3546.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lasic D. Novel applications of liposomes. Trends Biotechnol. 1998;16(7):307–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Wetzler M, Thomas DA, Wang ES, Shepard R, Ford LA, Heffner TL, et al. Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2013;13(4):430–4.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Zhang N, Liu D. Cancer chemotherapy with lipid-based nanocarriers. Crit Rev Ther Drug Carrier Syst. 2010;27(5):371–417.PubMedCrossRefGoogle Scholar
  16. 16.
    Kroemer G, Zitvogel L, Galluzzi L. Victories and deceptions in tumor immunology: Stimuvax. Oncoimmunology. 2013;2(1):e23687. Scholar
  17. 17.
    Ignatiadis M, Zardavas D, Lemort M, Wilke C, Vanderbeeken M-C, D’Hondt V, et al. Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer. Lonser RR, editor. PLoS One. 2016;11(7):e0154009. Scholar
  18. 18.
    Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13.Google Scholar
  19. 19.
    Al-Azayzih A, Missaoui WN, Cummings BS, Somanath PR. Liposome-mediated delivery of the p21 activated kinase-1 (PAK-1) inhibitor IPA-3 limits prostate tumor growth in vivo. Nanomed Nanotechnol Biol Med. 2016;12(5):1231–9.CrossRefGoogle Scholar
  20. 20.
    Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18(12):2009–14.PubMedCrossRefGoogle Scholar
  21. 21.
    Bonvalot S, Le Pechoux C, De Baere T, Kantor G, Buy X, Stoeckle E, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908–17. Scholar
  22. 22.
    Voss MH, Hussain A, Vogelzang N, Lee JL, Keam B, Rha SY, et al. A randomized phase II trial of CRLX101 in combination with bevacizumab versus standard of care in patients with advanced renal cell carcinoma. Ann Oncol. 2017;28(11):2754–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Chao J, Lin J, Frankel P, Clark AJ, Wiley DT, Garmey E, et al. Pilot trial of CRLX101 in patients with advanced, chemotherapy-refractory gastroesophageal cancer. J Gastrointest Oncol. 2017;8(6):962–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rivera Gil P, Hühn D, del Mercato LL, Sasse D, Parak WJ. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res. 2010;62(2):115–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Song Y, Cai H, Yin T, Huo M, Ma P, Zhou J, et al. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Int J Nanomedicine. 2018;13:1585–600.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Martin NK, Robey IF, Gaffney EA, Gillies RJ, Gatenby RA, Maini PK. Predicting the safety and efficacy of buffer therapy to raise tumour pHe: an integrative modelling study. Br J Cancer. 2012;106(7):1280–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release. 2012;164(2):156–69.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.PubMedGoogle Scholar
  29. 29.
    Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:1–19.CrossRefGoogle Scholar
  30. 30.
    Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–55.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    van Vlerken LE, Duan Z, Seiden MV, Amiji MM. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res. 2007;67(10):4843–50.PubMedCrossRefGoogle Scholar
  32. 32.
    Baczynska D, Widerak K, Ugorski M, Langner M. Surface charge and the association of liposomes with colon carcinoma cells. Z Naturforsch C. 56(9–10):872–7.CrossRefGoogle Scholar
  33. 33.
    Yu B, Zhang Y, Zheng W, Fan C, Chen T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg Chem. 2012;51(16):8956–63. Scholar
  34. 34.
    Szachowicz-Petelska B, Dobrzyńska I, Skrodzka M, Darewicz B, Figaszewski ZA, Kudelski J. Phospholipid composition and electric charge in healthy and cancerous parts of human kidneys. J Membr Biol. 2013;246(5):421–5. Scholar
  35. 35.
    Krasnici S, Werner A, Eichhorn ME, Schmitt-Sody M, Pahernik SA, Sauer B, et al. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer. 2003;105(4):561–7. Scholar
  36. 36.
    Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)–poly(d,l-lactide) block copolymer micelles with modulated surface charge. J Control Release. 2001;77(1–2):27–38.PubMedCrossRefGoogle Scholar
  37. 37.
    Romberg B, Oussoren C, Snel CJ, Hennink WE, Storm G. Effect of liposome characteristics and dose on the pharmacokinetics of liposomes coated with poly(amino acid)s. Pharm Res. 2007;24(12):2394–401. Scholar
  38. 38.
    Aoki H, Tottori T, Sakurai F, Fuji K, Miyajima K. Effects of positive charge density on the liposomal surface on disposition kinetics of liposomes in rats. Int J Pharm. 1997;156(2):163–74.CrossRefGoogle Scholar
  39. 39.
    Chan L, Gao P, Zhou W, Mei C, Huang Y, Yu X-F, et al. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge-switching ability for precise tumor radiosensitization. ACS Nano. 2018;12(12):12401–15. Scholar
  40. 40.
    Chen W, Li F, Tang Y, Yang S, Li J, Yuan Z, et al. Stepwise pH-responsive nanoparticles for enhanced cellular uptake and on-demand intracellular release of doxorubicin. Int J Nanomedicine. 2017;12:4241–56.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jing Y, Xiong X, Ming Y, Zhao J, Guo X, Yang G, et al. A multifunctional micellar nanoplatform with pH-triggered cell penetration and nuclear targeting for effective cancer therapy and inhibition to lung metastasis. Adv Healthc Mater. 2018;7(7):1700974. Scholar
  42. 42.
    Du J, Cheng Y, Teng Z, Huan M, Liu M, Cui H, et al. pH-triggered surface charge reversed nanoparticle with active targeting to enhance the antitumor activity of doxorubicin. Mol Pharm. 2016;13(5):1711–22. Scholar
  43. 43.
    Feng Q, Liu J, Li X, Chen Q, Sun J, Shi X, et al. One-step microfluidic synthesis of nanocomplex with tunable rigidity and acid-switchable surface charge for overcoming drug resistance. Small. 2017;13(9):1603109. Scholar
  44. 44.
    Wu W, Wang J, Lin Z, Li X, Li J. Tumor-acidity activated surface charge-conversion of polymeric nanocarriers for enhanced cell adhesion and targeted drug release. Macromol Rapid Commun. 2014;35(19):1679–84. Scholar
  45. 45.
    Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release. 2012;164(3):265–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Park JW. Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res. 2002;4(3):95–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Li Y, Kröger M, Liu WK. Endocytosis of PEGylated nanoparticles accompanied by structural and free energy changes of the grafted polyethylene glycol. Biomaterials. 2014;35(30):8467–78.PubMedCrossRefGoogle Scholar
  48. 48.
    Biswas S, Dodwadkar NS, Sawant RR, Torchilin VP. Development of the novel PEG-PE-based polymer for the reversible attachment of specific ligands to liposomes: synthesis and in vitro characterization. Bioconjug Chem. 2011;22(10):2005–13.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm. 2009;71(3):431–44.PubMedCrossRefGoogle Scholar
  50. 50.
    García-Román J, Zentella-Dehesa A. Vascular permeability changes involved in tumor metastasis. Cancer Lett. 2013;335(2):259–69.PubMedCrossRefGoogle Scholar
  51. 51.
    Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release. 2015;219:205–14.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49(23):6449–65.PubMedGoogle Scholar
  53. 53.
    Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013;73(5):1524–35.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release. 2006;116(2):150–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules. 2009;10(2):197–209.PubMedCrossRefGoogle Scholar
  56. 56.
    Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm. 2006;3(3):340–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ. Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater. 2004;3(April):244–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Giacomelli C, Schmidt V, Borsali R. Nanocontainers formed by self-assembly of poly(ethylene oxide)-b-poly(glycerol monomethacrylate)−drug conjugates. Macromolecules. 2007;40(6):2148–57. Scholar
  59. 59.
    Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, et al. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Adv Mater. 2007;19(23):4238–43. Scholar
  60. 60.
    Tang S, Yin Q, Su J, Sun H, Meng Q, Chen Y, et al. Inhibition of metastasis and growth of breast cancer by pH-sensitive poly (β-amino ester) nanoparticles co-delivering two siRNA and paclitaxel. Biomaterials. 2015;48:1–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Wike-Hooley JL, van den Berg AP, van der Zee J, Reinhold HS. Human tumour pH and its variation. Eur J Cancer Clin Oncol. 1985;21(7):785–91.PubMedCrossRefGoogle Scholar
  63. 63.
    Gerweck LE. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5(5):1275–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv Sci. 2017;4(1):1600124.CrossRefGoogle Scholar
  65. 65.
    Joglekar M, Trewyn BG. Polymer-based stimuli-responsive nanosystems for biomedical applications. Biotechnol J. 2013;8:931–45.PubMedCrossRefGoogle Scholar
  66. 66.
    De Oliveira H, Thevenot J, Lecommandoux S. Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(5):525–46. Scholar
  67. 67.
    Reinhold HS, Endrich B. Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia. 1986;2(2):111–37.PubMedCrossRefGoogle Scholar
  68. 68.
    Schwartz JA, Shetty AM, Price RE, Stafford RJ, Wang JC, Uthamanthil RK, et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res. 2009;69(4):1659–67.PubMedCrossRefGoogle Scholar
  69. 69.
    Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release. 2008;126(3):187–204.PubMedCrossRefGoogle Scholar
  70. 70.
    Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv. 2017;8(2):89–107.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tanbour R, Martins AM, Pitt WG, Husseini GA. Drug delivery systems based on polymeric micelles and ultrasound: a review. Curr Pharm Des. 2016;22(19):2796–807.PubMedCrossRefGoogle Scholar
  72. 72.
    Ahmadi F, McLoughlin IV, Chauhan S, Ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol. 2012;108(3):119–38.PubMedCrossRefGoogle Scholar
  73. 73.
    Zolochevska O, Figueiredo ML. Advances in sonoporation strategies for cancer. Front Biosci (Schol Ed). 2012;4:988–1006.Google Scholar
  74. 74.
    Thambi T, Park JH, Lee DS. Stimuli-responsive polymersomes for cancer therapy. Biomater Sci. 2015;4(1):55–69.CrossRefGoogle Scholar
  75. 75.
    Li Y, Tong R, Xia H, Zhang H, Xuan J. High intensity focused ultrasound and redox dual responsive polymer micelles. Chem Commun (Camb). 2010;46(c):7739–41.CrossRefGoogle Scholar
  76. 76.
    Vijayaraghavalu S, Raghavan D, Labhasetwar V. Nanoparticles for delivery of chemotherapeutic agents to tumors. Curr Opin Investig Drugs. 2007;8(6):477–84.PubMedGoogle Scholar
  77. 77.
    Luo D, Carter KA, Lovell JF. Nanomedical engineering: shaping future nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(2):169–88.PubMedCrossRefGoogle Scholar
  78. 78.
    Cao J, Chen D, Huang S, Deng D, Tang L, Gu Y. Multifunctional near infrared light-triggered biodegradable micelles for chemo- and photo-thermal combination therapy. Oncotarget. 2016;7(50):82170–84.PubMedPubMedCentralGoogle Scholar
  79. 79.
    You J, Zhang P, Hu F, Du Y, Yuan H, Zhu J, et al. Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy. Pharm Res. 2014;31:554–65.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    You J, Shao R, Wei X, Gupta S, Li C. Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small. 2010;6(9):1022–31. Scholar
  81. 81.
    Wang J-Y, Wu Q-F, Li J-P, Ren Q-S, Wang Y-L, Liu X-M. Photo-sensitive liposomes: chemistry and application in drug delivery. Mini-Rev Med Chem. 2010;10(2):172–81.PubMedCrossRefGoogle Scholar
  82. 82.
    Henderson TA, Morries L. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat. 2015;11:2191–208.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.CrossRefGoogle Scholar
  84. 84.
    Meerovich IG, Meerovich GA, Oborotova NA, Baryshnikov AY. Distribution of light along the depth of the tumor lesion and efficiency of utilization of therapeutic irradiation during the photodynamic therapy. Russ Biother J. 2006;5(3):94–7.Google Scholar
  85. 85.
    Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, et al. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget. 2017;8(24):39833–48.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, et al. Rapid light-triggered drug release in liposomes containing small amounts of unsaturated and porphyrin-phospholipids. Small. 2016;12(22):3039–47.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Catela Ivkovic T, Voss G, Cornella H, Ceder Y. microRNAs as cancer therapeutics: a step closer to clinical application. Cancer Lett. 2017;407:113–22.PubMedCrossRefGoogle Scholar
  88. 88.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell. 2004;15(2):185–97.PubMedCrossRefGoogle Scholar
  89. 89.
    Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30(4):460–71.PubMedCrossRefGoogle Scholar
  90. 90.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.CrossRefGoogle Scholar
  91. 91.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 MicroRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64(11):3753–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Mendell JT. miRiad roles for the miR-17-92 cluster in development and disease. Cell. 2008;133(2):217–22.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rice MA, Ishteiwy RA, Magani F, Udayakumar T, Reiner T, Yates TJ, et al. The microRNA-23b/−27b cluster suppresses prostate cancer metastasis via huntingtin-interacting protein 1-related. Oncogene. 2016;35(36):4752–61.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hao G, Hao H, Ding Y, Wen H, Li X, Wang Q, et al. Suppression of EIF4G2 by miR-379 potentiates the cisplatin chemosensitivity in nonsmall cell lung cancer cells. FEBS Lett. 2017;591(4):636–45.PubMedCrossRefGoogle Scholar
  95. 95.
    Dwivedi SKD, Mustafi SB, Mangala LS, Jiang D, Pradeep S, Rodriguez-Aguayo C, et al. Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget. 2016;7(12):15093–104.PubMedCrossRefGoogle Scholar
  96. 96.
    Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70(14):5923–30.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Swaika A, Hammond WA, Joseph RW. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy. Mol Immunol. 2015;67(2):4–17.PubMedCrossRefGoogle Scholar
  98. 98.
    Xu X, Chen W, Miao R, Zhou Y, Wang Z, Zhang L, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6(6):3988–4004.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Borralho PM, Kren BT, Castro RE. Moreira da Silva IB, steer CJ, Rodrigues CMP. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276(22):6689–700.PubMedCrossRefGoogle Scholar
  100. 100.
    Song B, Wang Y, Kudo K, Gavin EJ, Xi Y, Ju J. miR-192 regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res. 2008;14(24):8080–6.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Chen R, Li X, He B, Hu W. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma. Mol Med Rep. 2017;15(3):1326–34.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang Y-K, Stoudemire J, et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs. 2017;35(2):180–8.CrossRefGoogle Scholar
  103. 103.
    Conde J, Oliva N, Atilano M, Song HS, Artzi N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat Mater. 2016;15(3):353–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Lopez-Bertoni H, Kozielski K, Rui Y, Lal B, Vaughan H, Wilson D, et al. Bioreducible polymeric nanoparticles containing multiplexed cancer stem cell-regulating miRNAs inhibit glioblastoma growth and prolong survival. Nano Lett. 2018;18(7):4086–94. Scholar
  105. 105.
    Jurj A, Braicu C, Pop L-A, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Dev Ther. 2017;11:2871–90.CrossRefGoogle Scholar
  106. 106.
    Scarfò I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J Immunother Cancer. 2017;5:28.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Liu X, Ranganathan R, Jiang S, Fang C, Sun J, Kim S, et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76(6):1578–90.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Grippin AJ, Sayour EJ, Mitchell DA. Translational nanoparticle engineering for cancer vaccines. Oncoimmunology. 2017;6(10):e1290036.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tyner KM, Zou P, Yang X, Zhang H, Cruz CN, Lee SL. Product quality for nanomaterials: current U.S. experience and perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7(5):640–54.PubMedCrossRefGoogle Scholar
  111. 111.
    Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. Issues and concerns in nanotech product development and its commercialization. J Control Release. 2014;193:51–62.PubMedCrossRefGoogle Scholar
  112. 112.
    Agrahari V, Hiremath P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine. 2017;12(8):819–23.PubMedCrossRefGoogle Scholar
  113. 113.
    Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6(2):114–8.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014;2(1):27.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    NanoHybrids. Nanoparticles approved in the United States (US) and Europe (EU) for medical applications. 2017 [cited 2019 Mar 7]. Available from:
  116. 116.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–87. Scholar
  117. 117.
    Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. P T. 2017;42(12):742–55.PubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Department of Pharmacy Sciences, School of Pharmacy and Health ProfessionsCreighton UniversityOmahaUSA

Personalised recommendations