Skip to main content
Log in

Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Among non-viral vectors, the cationic polymer chitosan has gained attention as a gene delivery system. We hypothesized that the addition of casein into the nanoparticle’s structure would facilitate a proper gene transfer. The work herein presented aimed to optimize the production method of chitosan-casein nanoparticles (ChiCas NPs) and to test their ability as a gene delivery system. ChiCas NPs formulation optimization was carried out by analyzing several characteristics such as NP size, zeta potential, and chitosan and casein incorporation efficacy. The best formulation developed presented small and homogenous particle size (around 335 nm) and positive zeta potential (≈ + 38 mV), and showed to be stable for 34 weeks both, at 4°C and 20°C. The particles were further used to entrap or to adsorb DNA and form NPs-DNA complexes. In vitro transfection studies, carried out in COS-7 cells, suggested a low transfection efficiency of the different NPs:DNA ratios tested, comparatively to the positive control. Nonetheless, we could observe that the complexes with larger sizes presented better transfection results than those with smaller diameters. To conclude, ChiCas NPs have great technological potential since the preparation process is very simple, and the DNA incorporation efficacy is very high and shows to be physically very stable. The NPs:DNA ratio still needs to be optimized with the aim of achieving better transfection results and being able to anticipate a high gene expression on DNA-based vaccination studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm. 2004;57(1):1–8. https://doi.org/10.1016/S0939-6411(03)00155-3.

    Article  CAS  PubMed  Google Scholar 

  2. Jesus S, Soares E, Borchard G, Borges O. Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine. 2017;12(19):2335–48.

    Article  CAS  PubMed  Google Scholar 

  3. Park J, Kim WJ. Current status of gene delivery: spotlight on nanomaterial-polymer hybrids. J Drug Target. 2012;20(8):648–66. https://doi.org/10.3109/1061186X.2012.704634.

    Article  CAS  PubMed  Google Scholar 

  4. Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013;14(1):1629–54. https://doi.org/10.3390/ijms14011629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garaiova Z, Strand SP, Reitan NK, Lelu S, Storset SO, Berg K, et al. Cellular uptake of DNA-chitosan nanoparticles: the role of clathrin- and caveolae-mediated pathways. Int J Biol Macromol. 2012;51(5):1043–51.

    Article  CAS  PubMed  Google Scholar 

  6. Lebre F, Borchard G, Faneca H, De Lima MCP, Borges O. Intranasal administration of novel chitosan nanoparticle/DNA complexes induces antibody response to hepatitis B surface antigen in mice. Mol Pharm. 2016;13(2):472–82.

    Article  CAS  PubMed  Google Scholar 

  7. Thomas M, Klibanov AM. Non-viral gene therapy: polycation-mediated DNA delivery. Appl Microbiol Biotechnol. 2003;62(1):27–34. https://doi.org/10.1007/s00253-003-1321-8.

    Article  CAS  PubMed  Google Scholar 

  8. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008;29(24–25):3477–96.

    Article  CAS  PubMed  Google Scholar 

  9. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet. 2011;12(5):316–28. https://doi.org/10.1038/nrg2971.

    Article  CAS  PubMed  Google Scholar 

  10. Paiva D, Ivanova G, Pereira MD, Rocha S. Chitosan conjugates for DNA delivery. Phys Chem Chem Phys. 2013;15:11893–9. https://doi.org/10.1039/c3cp51215k.

    Article  CAS  PubMed  Google Scholar 

  11. Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56(3):290–9. https://doi.org/10.1016/j.yrtph.2009.09.015.

    Article  CAS  PubMed  Google Scholar 

  12. Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010;7(10):1191–207.

    Article  CAS  PubMed  Google Scholar 

  13. Hejazi R, Amiji M. Chitosan-based gastrointestinal delivery systems. J Control Release. 2003;89(2):151–65. https://doi.org/10.1016/S0168-3659(03)00126-3.

    Article  CAS  PubMed  Google Scholar 

  14. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010.

    Article  CAS  PubMed  Google Scholar 

  15. Borges O, Borchard G, de Sousa A, Junginger HE, Cordeiro-da-Silva A. Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. Int J Pharm. 2007;337(1–2):254–64.

    Article  CAS  PubMed  Google Scholar 

  16. Anal AK, Tobiassen A, Flanagan J, Singh H. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Colloids Surf B Biointerfaces. 2008;64(1):104–10. https://doi.org/10.1016/j.colsurfb.2008.01.010.

    Article  CAS  PubMed  Google Scholar 

  17. Lebre F, Bento D, Jesus S, Borges O. Chitosan-based nanoparticles as a hepatitis B antigen delivery system. In: Methods in Enzymology, vol. 509. 1st ed. Amsterdam: Elsevier Inc; 2012. p. 127–42.

    Google Scholar 

  18. Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, et al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release. 2001;70(3):399–421. https://doi.org/10.1016/S0168-3659(00)00361-8.

    Article  CAS  PubMed  Google Scholar 

  19. Gao Y, Xu Z, Chen S, Gu W, Chen L, Li Y. Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: in vitro characteristics and transfection efficiency. Int J Pharm. 2008;359(1–2):241–6.

    Article  CAS  PubMed  Google Scholar 

  20. Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011;153(3):206–16. https://doi.org/10.1016/j.jconrel.2011.02.010.

    Article  CAS  PubMed  Google Scholar 

  21. Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161(1):38–49. https://doi.org/10.1016/j.jconrel.2012.04.036.

    Article  CAS  PubMed  Google Scholar 

  22. Soto ER, O’Connell O, Dikengil F, Peters PJ, Clapham PR, Ostroff GR. Targeted delivery of glucan particle encapsulated gallium nanoparticles inhibits HIV growth in human macrophages. J Drug Deliv. 2016;2016(8520629):1–8.

    Article  Google Scholar 

  23. Soto ER, Caras AC, Kut LC, Castle MK, Ostroff GR. Glucan particles for macrophage targeted delivery of nanoparticles. J Drug Deliv. 2012;2012:1–13. https://doi.org/10.1155/2012/143524.

    Article  CAS  Google Scholar 

  24. Tesz GJ, Aouadi M, Prot M, Nicoloro SM, Boutet E, Amano SU, et al. Glucan particles for selective delivery of siRNA to phagocytic cells in mice. Biochem J. 2011;436(2):351–62. https://doi.org/10.1042/BJ20110352.

    Article  CAS  PubMed  Google Scholar 

  25. Mendelovits A, Prat T, Gonen Y, Rytwoa G. Improved colorimetric determination of chitosan concentrations by dye binding. Appl Spectrosc. 2012;66(8):979–82. https://doi.org/10.1366/12-06591a.

    Article  CAS  PubMed  Google Scholar 

  26. Wischke C, Borchert HH. Increased sensitivity of chitosan determination by a dye binding method. Carbohydr Res. 2006;341(18):2978–9. https://doi.org/10.1016/j.carres.2006.10.012.

    Article  CAS  PubMed  Google Scholar 

  27. Muzzarelli RA. Colorimetric determination of chitosan. Anal Biochem. 1998;260(2):255–7. https://doi.org/10.1006/abio.1998.2705.

    Article  CAS  PubMed  Google Scholar 

  28. Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H, Coelho JFJ. High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 2017;47:113–23. https://doi.org/10.1016/j.actbio.2016.10.015.

    Article  CAS  PubMed  Google Scholar 

  29. Jesus S, Borchard G, Borges O. Freeze dried chitosan/poly-ε-caprolactone and poly-ε-caprolactone nanoparticles: evaluation of their potential as DNA and antigen delivery systems. J Genet Syndr Gene Ther. 2013;4(7):1–11.

    Google Scholar 

  30. Nasti A, Zaki NM, De Leonardis P, Ungphaiboon S, Sansongsak P, Rimoli MG, et al. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res. 2009;26(8):1918–30. https://doi.org/10.1007/s11095-009-9908-0.

    Article  CAS  PubMed  Google Scholar 

  31. Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16:1576–81. https://doi.org/10.1023/A:1018908705446.

    Article  PubMed  Google Scholar 

  32. Senior J, Trimble K, Maskiewicz R. Interaction of positively-charged liposomes with blood: implications for their application in vivo. BBA - Biomembr. 1991;1070(1):173–9.

    Article  CAS  Google Scholar 

  33. Sarah P, Clarke, B. Development of hierarchical magnetic nanocomposite materials for biomedical applications thesis submitted for the degree of doctor of Philosophy. 2013, DOI: https://doi.org/10.1080/14789949.2013.862292.

  34. Strand SP, Lelu S, Reitan NK, de Lange Davies C, Artursson P, Vårum KM. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials. 2010;31(5):975–87. https://doi.org/10.1016/j.biomaterials.2009.09.102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Borges.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panão Costa, J., Carvalho, S., Jesus, S. et al. Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency. AAPS PharmSciTech 20, 132 (2019). https://doi.org/10.1208/s12249-019-1342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1342-y

KEY WORDS

Navigation