Delivery Systems as Vital Tools in Drug Repurposing

Abstract

The process of developing an old drug for new indications is now a widely accepted strategy of shortening drug development time, reducing drug costs, and improving drug availability, especially for rare and neglected diseases. In this mini-review, we highlighted the impact of drug delivery systems in the fulfillment of crucial aspects of drug repurposing such as (i) maximizing the repurposed drug effects on a new target, (ii) minimizing off-target effects, (iii) modulating the release profiles of drug at the site of absorption, (iv) modulating the pharmacokinetics/in vivo biodistribution of the repurposed drug, (v) targeting/modulating drug retention at the sites of action, and (vi) providing a suitable platform for therapeutic application of combination drugs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Adams CP, Brantner VV. Estimating the cost of new drug development: is it really $802 million? Health Aff. 2006;25(2):420–8.

    Google Scholar 

  2. 2.

    Hahn K. Old drugs are new again, vol. 566. Plainsboro, NJ: Intellisphere, LLC; 2011.

    Google Scholar 

  3. 3.

    DiMasi JA, Feldman L, Seckler A, Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther. 2010;87(3):272–7.

    CAS  PubMed  Google Scholar 

  4. 4.

    Li YY, Jones SJ. Drug repositioning for personalized medicine. Genome Med. 2012;4(3):27.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Sleigh SH, Barton CL. Repurposing strategies for therapeutics. Pharm Med. 2010;24(3):151–9.

    Google Scholar 

  6. 6.

    Cragg GM, Grothaus PG, Newman DJ. New horizons for old drugs and drug leads. J Nat Prod. 2014;77(3):703–23.

    CAS  PubMed  Google Scholar 

  7. 7.

    Napolitano F, Zhao Y, Moreira VM, Tagliaferri R, Kere J, D’Amato M, et al. Drug repositioning: a machine-learning approach through data integration. Journal of Cheminform. 2013;5(1):30.

    CAS  Google Scholar 

  8. 8.

    Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov Today. 2010;15(17):749–56.

    PubMed  Google Scholar 

  9. 9.

    Sciences NCfAT. Early-Stage Repurposing [Webpage]. 6701 Democracy Boulevard, Bethesda MD 20892–4874: US Department of Health and Human Services; 2018 [updated 8–20-18. Available from: https://ncats.nih.gov/preclinical/repurpose/early. Accessed 22 June 2018.

  10. 10.

    Yeh CT, Wu AT, Chang PM, Chen KY, Yang CN, Yang SC, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med. 2012;186(11):1180–8.

    CAS  PubMed  Google Scholar 

  11. 11.

    Oliva CR, Zhang W, Langford C, Suto MJ, Griguer CE. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget. 2017;8(23):37568–83.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Zhang C, Gong P, Liu P, Zhou N, Zhou Y, Wang Y. Thioridazine elicits potent antitumor effects in colorectal cancer stem cells. Oncol Rep. 2017;37(2):1168–74.

    CAS  PubMed  Google Scholar 

  13. 13.

    Arber N, Eagle CJ, Spicak J, Racz I, Dite P, Hajer J, et al. Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med. 2006;355(9):885–95.

    CAS  PubMed  Google Scholar 

  14. 14.

    Tranfaglia MR, Thibodeaux C, Mason DJ, Brown D, Roberts I, Smith R, et al. Repurposing available drugs for neurodevelopmental disorders: the fragile X experience. Neuropharmacology. 2018. https://doi.org/10.1016/j.neuropharm.2018.05.004.

  15. 15.

    Leigh MJ, Nguyen DV, Mu Y, Winarni TI, Schneider A, Chechi T, et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile X syndrome. J Dev Behav Pediatr JDBP. 2013;34(3):147–55.

    PubMed  Google Scholar 

  16. 16.

    Nagaoka A, Takehara H, Hayashi-Takagi A, Noguchi J, Ishii K, Shirai F, et al. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci Rep. 2016;6:26651.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ming X, Mulvey M, Mohanty S, Patel V. Safety and efficacy of clonidine and clonidine extended-release in the treatment of children and adolescents with attention deficit and hyperactivity disorders. Adolesc Health Med Ther. 2011;2:105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Cipriani P, Ruscitti P, Carubbi F, Liakouli V, Giacomelli R. Methotrexate: an old new drug in autoimmune disease. Expert Rev Clin Immunol. 2014;10(11):1519–30.

    CAS  PubMed  Google Scholar 

  19. 19.

    Taherian E, Rao A, Malemud CJ, Askari AD. The biological and clinical activity of anti-malarial drugs in autoimmune disorders. Curr Rheumatol Rev. 2013;9(1):45–62.

    CAS  PubMed  Google Scholar 

  20. 20.

    Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Jaromin A, Zarnowski R, Pietka-Ottlik M, Andes DR, Gubernator J. Topical delivery of ebselen encapsulated in biopolymeric nanocapsules: drug repurposing enhanced antifungal activity. Nanomedicine (London, England). 2018;13(10):1139–55.

    CAS  Google Scholar 

  22. 22.

    Nagai N, Yoshioka C, Mano Y, Tnabe W, Ito Y, Okamoto N, et al. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp Eye Res. 2015;132:115–23.

    CAS  PubMed  Google Scholar 

  23. 23.

    Deguchi S, Otake H, Nakazawa Y, Hiramatsu N, Yamamoto N, Nagai N. Ophthalmic formulation containing nilvadipine nanoparticles prevents retinal dysfunction in rats injected with streptozotocin. Int J Mol Sci. 2017;18(12):2720.

  24. 24.

    Mylonaki I, Strano F, Deglise S, Allemann E, Alonso F, Corpataux JM, et al. Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia. J Controll Release. 2016;232:93–102.

    CAS  Google Scholar 

  25. 25.

    Gupta N, Al-Saikhan FI, Patel B, Rashid J, Ahsan F. Fasudil and SOD packaged in peptide-studded-liposomes: properties, pharmacokinetics and ex-vivo targeting to isolated perfused rat lungs. Int J Pharm. 2015;488(1–2):33–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rostamkalaei SS, Akbari J, Saeedi M, Morteza-Semnani K, Nokhodchi A. Topical gel of metformin solid lipid nanoparticles: a hopeful promise as a dermal delivery system. Colloids Surf B: Biointerfaces. 2018;175:150–7.

    PubMed  Google Scholar 

  27. 27.

    Brooks AM, Gillies WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects. Drugs Aging. 1992;2(3):208–21.

    CAS  PubMed  Google Scholar 

  28. 28.

    Vanderveen EE, Ellis CN, Kang S, Case P, Headington JT, Voorhees JJ, et al. Topical minoxidil for hair regrowth. J Am Acad Dermatol. 1984;11(3):416–21.

    CAS  PubMed  Google Scholar 

  29. 29.

    Marcus S. Beyond repurposing: the case for creating new chemical entities by modifying existing molecules: Genetic Engineering and Biotechnology News August 28, 2017 [Available from: https://www.genengnews.com/gen-exclusives/beyond-repurposing-the-case-for-creating-new-chemical-entities-by-modifying-existing-molecules/77900970. Accessed 22 June 2018.

  30. 30.

    Kovacsovics TJ, Mims A, Salama ME, Pantin J, Rao N, Kosak KM, et al. Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv. 2018;2(4):381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Gama N, Kumar K, Ekengard E, Haukka M, Darkwa J, Nordlander E, et al. Gold(I) complex of 1,1′-bis(diphenylphosphino) ferrocene-quinoline conjugate: a virostatic agent against HIV-1. Biometals. 2016;29(3):389–97.

    CAS  PubMed  Google Scholar 

  32. 32.

    Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D, et al. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int J Nanomedicine. 2012;7:5683–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, et al. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Investig New Drugs. 2013;31(6):1424–35.

    Google Scholar 

  34. 34.

    Venkatesan P, Puvvada N, Dash R, Prashanth Kumar BN, Sarkar D, Azab B, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials. 2011;32(15):3794–806.

    CAS  PubMed  Google Scholar 

  35. 35.

    Marques JG, Gaspar VM, Costa E, Paquete CM, Correia IJ. Synthesis and characterization of micelles as carriers of non-steroidal anti-inflammatory drugs (NSAID) for application in breast cancer therapy. Colloids Surf B: Biointerfaces. 2014;113:375–83.

    CAS  PubMed  Google Scholar 

  36. 36.

    Lu Z, Long Y, Cun X, Wang X, Li J, Mei L, et al. A size-shrinkable nanoparticle-based combined anti-tumor and anti-inflammatory strategy for enhanced cancer therapy. Nanoscale. 2018;10(21):9957–70.

    CAS  PubMed  Google Scholar 

  37. 37.

    Paulmurugan R, Bhethanabotla R, Mishra K, Devulapally R, Foygel K, Sekar TV, et al. Folate receptor-targeted polymeric micellar nanocarriers for delivery of orlistat as a repurposed drug against triple-negative breast cancer. Mol Cancer Ther. 2016;15(2):221–31.

    CAS  PubMed  Google Scholar 

  38. 38.

    Eskinazi-Budge A, Manickavasagam D, Czech T, Novak K, Kunzler J, Oyewumi MO. Preparation of emulsifying wax/GMO nanoparticles and evaluation as a delivery system for repurposing simvastatin in bone regeneration. Drug Dev Ind Pharm. 2018;44(10)1583–90.

  39. 39.

    Naito Y, Terukina T, Galli S, Kozai Y, Vandeweghe S, Tagami T, et al. The effect of simvastatin-loaded polymeric microspheres in a critical size bone defect in the rabbit calvaria. Int J Pharm. 2014;461(1–2):157–62.

    CAS  PubMed  Google Scholar 

  40. 40.

    Matbou Riahi M, Sahebkar A, Sadri K, Nikoofal-Sahlabadi S, Jaafari MR. Stable and sustained release liposomal formulations of celecoxib: in vitro and in vivo anti-tumor evaluation. Int J Pharm. 2018;540(1–2):89–97.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jin M, Shen X, Zhao C, Qin X, Liu H, Huang L, et al. In vivo study of effects of artesunate nanoliposomes on human hepatocellular carcinoma xenografts in nude mice. Drug Deliv. 2013;20(3–4):127–33.

    CAS  PubMed  Google Scholar 

  42. 42.

    Agarwal NB, Jain S, Nagpal D, Agarwal NK, Mediratta PK, Sharma KK. Liposomal formulation of curcumin attenuates seizures in different experimental models of epilepsy in mice. Fundam Clin Pharmacol. 2013;27(2):169–72.

    CAS  PubMed  Google Scholar 

  43. 43.

    Xiao Y, Wang S, Zong Q, Yin Z. Co-delivery of metformin and paclitaxel via folate-modified pH-sensitive micelles for enhanced anti-tumor efficacy. AAPS PharmSciTech. 2018;19(5)2395–406.

  44. 44.

    Xu P, Yu H, Zhang Z, Meng Q, Sun H, Chen X, et al. Hydrogen-bonded and reduction-responsive micelles loading atorvastatin for therapy of breast cancer metastasis. Biomaterials. 2014;35(26):7574–87.

    CAS  PubMed  Google Scholar 

  45. 45.

    Andalib S, Molhemazar P, Danafar H. In vitro and in vivo delivery of atorvastatin: a comparative study of anti-inflammatory activity of atorvastatin loaded copolymeric micelles. J Biomater Appl. 2018;32(8):1127–38.

    CAS  PubMed  Google Scholar 

  46. 46.

    McDonald BF, Quinn AM, Devers T, Cullen A, Coulter IS, Marison IW, et al. In-vitro characterisation of a novel celecoxib microbead formulation for the treatment and prevention of colorectal cancer. J Pharm Pharmacol. 2015;67(5):685–95.

    CAS  PubMed  Google Scholar 

  47. 47.

    Hill EE, Kim JK, Jung Y, Neeley CK, Pienta KJ, Taichman RS, et al. Integrin alpha V beta 3 targeted dendrimer-rapamycin conjugate reduces fibroblast-mediated prostate tumor progression and metastasis. J Cell Biochem. 2018;119:8074–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    El-Moslemany RM, Eissa MM, Ramadan AA, El-Khordagui LK, El-Azzouni MZ. Miltefosine lipid nanocapsules: intersection of drug repurposing and nanotechnology for single dose oral treatment of pre-patent schistosomiasis mansoni. Acta Trop. 2016;159:142–8.

    CAS  PubMed  Google Scholar 

  49. 49.

    Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Controll Release. 2005;108(2–3):193–214.

    CAS  Google Scholar 

  50. 50.

    Nath SD, Linh NT, Sadiasa A, Lee BT. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration. J Biomater Appl. 2014;28(8):1151–63.

    PubMed  Google Scholar 

  51. 51.

    Thapa RK, Nguyen HT, Jeong J-H, Kim JR, Choi H-G, Yong CS, et al. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep. 2017;7:43299.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Thomases Family Endowment and Dr. Colene Young Memorial Fund. Dharani Manickavasagam helped with literature compilation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moses O. Oyewumi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Mahavir Bhupal Chougule, Vijaykumar B. Sutariya and Sudip K. Das

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Czech, T., Lalani, R. & Oyewumi, M.O. Delivery Systems as Vital Tools in Drug Repurposing. AAPS PharmSciTech 20, 116 (2019). https://doi.org/10.1208/s12249-019-1333-z

Download citation

KEY WORDS

  • nanocarriers
  • drug delivery systems
  • nanoparticles
  • drug development
  • combination drugs