pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery

Abstract

In the current study, cytocompatible in situ cross-linkable pH/thermo-dual responsive injectable hydrogels were prepared based on poly(N-isopropylacrylamide) and carboxymethyl chitosan, i.e., poly(CMCS-g-NIPAAm). The prepared formulations were aimed to be used as drug depot of 5-fluorouracil (5-FU) after subcutaneous administration in vivo. The phase transition from sol-gel state under physiologic temperature range was analyzed and confirmed by tube titling and optical transmittance measurements. The viscoelastic properties of gel formulations were confirmed by rheology determination via time sweep, temperature, and continuous ramp test. Oscillatory swelling cycles confirmed temperature effect and structural changes. pH and temperature sensitivity of dual responsive gels were analyzed at different pH and temperature programs. In vitro drug release profile displayed that developed formulations have the highest release in acidic pH at 25°C. The safety of blank gel formulations was evaluated against L929 cell lines via MTT assay and confirmed cytocompatibility with no detectable toxicity. In vitro cytotoxic potential of drug-loaded gels against HeLa and MCF-7 cancer cell lines confirmed that 5-FU has controlled cytotoxic potential in depot form in comparison to free 5-FU solution. The IC50 values for free 5-FU (21 ± 05 μg/ml and 18 ± 66 μg/ml) were found higher in comparison to the loaded form. The copolymer structure formation was confirmed by NMR and FTIR spectroscopic analysis. TG and DSC analysis proved the thermal stability and phase transition temperatures of pure and copolymer samples, while SEM analysis showed the porous nature of in situ formed hydrogels. It was concluded from the results that the developed formulations have pH/temperature sensitivity with potential of systemic and intratumoral controlled drug delivery properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Khan S, Minhas MU, Ahmad M, Sohail M. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic ® 127 as controlled delivery depot of curcumin. Development, characterization and in vitro evaluation. J Biomater Sci Polym Ed. 2018;29:1–34.

    CAS  PubMed  Google Scholar 

  2. 2.

    Khan S, Ullah A, Ullah K, Rehman N. Insight into hydrogels. Des Monomers Polym. 2016;19:456–78.

    CAS  Google Scholar 

  3. 3.

    Ranjha NM, Ayub G, Naseem S, Ansari MT. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci Mater Med. 2010;21:2805–16.

    CAS  PubMed  Google Scholar 

  4. 4.

    Khan S, Ranjha NM. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym Bull. 2014;71:2133–58.

    CAS  Google Scholar 

  5. 5.

    Delair T. In situ forming polysaccharide-based 3D-hydrogels for cell delivery in regenerative medicine. Carbohydr Polym. 2012;87:1013–9.

    CAS  Google Scholar 

  6. 6.

    Hu L, Sun Y, Wu Y. Advances in chitosan-based drug delivery vehicles. Nanoscale. 2013;5:3103–11.

    CAS  PubMed  Google Scholar 

  7. 7.

    Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J. Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm. 391:115–24.

  8. 8.

    Miao T, Fenn SL, Charron PN, Oldinski RA. Self-healing and thermoresponsive dual-cross-linked alginate hydrogels based on supramolecular inclusion complexes. Biomacromolecules. 2015;16:3740–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Chen J-P, Cheng T-H. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer. 2009;50:107–16.

    CAS  Google Scholar 

  10. 10.

    Overstreet DJ, Dutta D, Stabenfeldt SE, Vernon BL. Injectable hydrogels. J Polym Sci Part B Polym Phys. 2012;50:881–903.

    CAS  Google Scholar 

  11. 11.

    Patenaude M, Hoare T. Injectable, degradable thermoresponsive poly(N-isopropylacrylamide) hydrogels. ACS Macro Lett. 2012;1:409–13.

    CAS  Google Scholar 

  12. 12.

    Rodell CB, Kaminski AL, Burdick JA. Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules. 2013;14:4125–34.

    CAS  PubMed  Google Scholar 

  13. 13.

    He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release. 2008;127:189–207.

    CAS  PubMed  Google Scholar 

  14. 14.

    Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci. 2004;29:1173–222.

    CAS  Google Scholar 

  15. 15.

    Park YD, Tirelli N, Hubbell JA. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials. 2003;24:893–900.

    CAS  PubMed  Google Scholar 

  16. 16.

    Vieira JN, Posada JJ, Rezende RA, Sabino MA. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels. Mater Sci Eng C. 2014;37:20–7.

    CAS  Google Scholar 

  17. 17.

    Afroze F, Nies E, Berghmans H. Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behaviour of the corresponding networks. J Mol Struct. 2000;554:55–68.

    CAS  Google Scholar 

  18. 18.

    Pelton R. Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. J Colloid Interface Sci. 2010;348:673–4.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.

    PubMed  Google Scholar 

  20. 20.

    Ekenseair AK, Boere KWM, Tzouanas SN, Vo TN, Kasper FK, Mikos AG. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Biomacromolecules. 2012;13:1908–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci. 2009;34:893–910.

    CAS  Google Scholar 

  22. 22.

    Kim DY, Kwon DY, Lee BN, Seo HW, Kwon JS, Lee B, et al. Injectable in situ-forming hydrogels for a suppression of drug burst from drug-loaded microcapsules. Soft Matter. 2012;8:7638.

    CAS  Google Scholar 

  23. 23.

    Rahman CV, Saeed A, White LJ, Gould TWA, Kirby GTS, Sawkins MJ, et al. Chemistry of polymer and ceramic-based injectable scaffolds and their applications in regenerative medicine. Chem Mater. 2012;24:781–95.

    CAS  Google Scholar 

  24. 24.

    Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci. 2010;55:675–709.

    CAS  Google Scholar 

  25. 25.

    Gao X, Zhou Y, Ma G, Shi S, Yang D, Lu F, et al. A water-soluble photocrosslinkable chitosan derivative prepared by Michael-addition reaction as a precursor for injectable hydrogel. Carbohydr Polym. 2010;79:507–12.

    CAS  Google Scholar 

  26. 26.

    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    PubMed  Google Scholar 

  27. 27.

    Wang L, Lin X, Wang J, Hu Z, Ji Y, Hou S, et al. Novel insights into combating cancer chemotherapy resistance using a plasmonic nanocarrier: enhancing drug sensitiveness and accumulation simultaneously with localized mild photothermal stimulus of femtosecond pulsed laser. Adv Funct Mater. 2014;24:4229–39.

    CAS  Google Scholar 

  28. 28.

    Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee Y. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014;6:12413–21.

    CAS  PubMed  Google Scholar 

  29. 29.

    Curley SA, Izzo F, Abdalla E, Vauthey JN. Surgical treatment of colorectal cancer metastasis. Cancer Metastasis Rev. 2004;23:165–82.

    PubMed  Google Scholar 

  30. 30.

    Yarden Y, Baselga J, Miles D. Molecular approach to breast cancer treatment. Semin Oncol. 2004;31:6–13.

    CAS  PubMed  Google Scholar 

  31. 31.

    Nishiyama M, Eguchi H. Pharmacokinetics and pharmacogenomics in gastric cancer chemotherapy. Adv Drug Deliv Rev. 2009;61:402–7.

    CAS  PubMed  Google Scholar 

  32. 32.

    Choi IS, Oh D-Y, Kim B-S, Lee K-W, Kim JH, Lee J-S. Oxaliplatin, 5-FU, folinic acid as first-line palliative chemotherapy in elderly patients with metastatic or recurrent gastric cancer. Cancer Res Treat. 2007;39:99–103.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Chen LQ, Pagel MD. Evaluating pH in the extracellular tumor microenvironment using CEST MRI and other imaging methods. Adv Radiol. 2015;2015:1–25.

    Google Scholar 

  35. 35.

    Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017;155:208–17.

    CAS  PubMed  Google Scholar 

  36. 36.

    Cheng C, Xia D, Zhang X, Chen L, Zhang Q. Biocompatible poly(N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J Mater Sci. 2015;50:4914–25.

    CAS  Google Scholar 

  37. 37.

    Zhou X, Wang J, Nie J, Du B. Poly(N-isopropylacrylamide)-based ionic hydrogels: synthesis, swelling properties, interfacial adsorption and release of dyes. Polym J. 2016;48:431–8.

    CAS  Google Scholar 

  38. 38.

    Tamer TM, Omer AM, Hassan MA, Hassan ME, Sabet MM, Eldin MSM. Development of thermo-sensitive poly N-isopropyl acrylamide grafted chitosan derivatives. 2015 [cited 2016 Jul 1]. Available from: http://imsear.hellis.org/handle/123456789/166801

  39. 39.

    Sohail M, Ahmad M, Minhas MU, Ali L, Khalid I, Rashid H. Controlled delivery of valsartan by cross-linked polymeric matrices: synthesis, in vitro and in vivo evaluation. Int J Pharm. 2015;487:110–9.

    CAS  PubMed  Google Scholar 

  40. 40.

    Li Y, Tan Y, Xu K, Lu C, Liang X, Wang P. In situ crosslinkable hydrogels formed from modified starch and O-carboxymethyl chitosan. RSC Adv. 2015;5:30303–9.

    Google Scholar 

  41. 41.

    Nasir F, Iqbal Z, Khan JA, Khan A, Khuda F, Ahmad L, et al. Development and evaluation of diclofenac sodium thermorevesible subcutaneous drug delivery system. Int J Pharm. 2012;439:120–6.

    CAS  PubMed  Google Scholar 

  42. 42.

    Qu Y, Chu BY, Peng JR, Liao JF, Qi TT, Shi K, et al. A biodegradable thermo-responsive hybrid hydrogel: therapeutic applications in preventing the post-operative recurrence of breast cancer. NPG Asia Mater. 2015;7:e207.

    CAS  Google Scholar 

  43. 43.

    Wan Ngah W, Endud C, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym. 2002;50:181–90.

    Google Scholar 

  44. 44.

    Shah HS, Al-Oweini R, Haider A, Kortz U, Iqbal J. Cytotoxicity and enzyme inhibition studies of polyoxometalates and their chitosan nanoassemblies. Toxicol Rep. 2014;1:341–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Guo B-L, Gao Q-Y. Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res. 2007;342:2416–22.

    CAS  PubMed  Google Scholar 

  46. 46.

    Antoniraj MG, Kumar CS, Kandasamy R. Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid Polym Sci. 2016;294:527–35.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Islamia University of Bahawalpur, Pakistan, for financing this study for the project under the Financial Support Research Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Minhas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Akhtar, N., Minhas, M.U. et al. pH/Thermo-Dual Responsive Tunable In Situ Cross-Linkable Depot Injectable Hydrogels Based on Poly(N-Isopropylacrylamide)/Carboxymethyl Chitosan with Potential of Controlled Localized and Systemic Drug Delivery. AAPS PharmSciTech 20, 119 (2019). https://doi.org/10.1208/s12249-019-1328-9

Download citation

KEY WORDS

  • intratumoral depot
  • dual responsive gels
  • N-isopropylacrylamide
  • 5-flourouracil
  • HeLa cancer cells
  • MCF-7 cancer cells