QbD-Based Development of Cationic Self-nanoemulsifying Drug Delivery Systems of Paclitaxel with Improved Biopharmaceutical Attributes

Abstract

The present studies describe quality-by-design-based design and characterization of cationic self-nanoemulsifying formulations of paclitaxel for improving its biopharmaceutical attributes. Solubility and phase titration experiments were designed to select the lipidic and emulsifying excipients. Two different types of lipidic nanoformulations were developed using medium-chain triglycerides (MCTs) and long-chain triglycerides (LCTs). The nanoformulations were optimized by mixture designs and subjected to evaluation for globule size, zeta potential, drug release, and intestinal permeability. Following apt mathematical modeling, the optimum nanoformulation was earmarked using numerical optimization. Further, cationic formulations were developed for both LCT- and MCT-containing formulations and subjected to performance evaluation. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated 2.7-fold improvement in dissolution rate from optimized cationic nanoformulations over powder pure drug. Ex vivo and in situ evaluation performed on Wistar rats exhibited nearly six- to eightfold enhancement in permeation and absorption parameters of the drug for the optimized cationic nanoformulation as compared to the pure paclitaxel. Pharmacokinetic studies indicated nearly 13.4-fold improvement in AUC and Cmax, along with 1.8-fold reduction in Tmax of the drug from cationic nanoformulations as compared to the pure drug suspension. Moreover, nanoformulation containing long-chain lipids exhibited superior performance (1.18-fold improvement in drug absorption) over medium-chain lipids. Cytotoxicity evaluation of cationic nanoformulations on MCF-7 cells revealed significant reduction in growth vis-à-vis the pure drug. Overall, the current paper reports successful systematic development of paclitaxel-loaded cationic self-nanoemulsifying systems with distinctly improved biopharmaceutical performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Beg S, Swain S, Rizwan M, Irfanuddin M, Malini DS. Bioavailability enhancement strategies: basics, formulation approaches and regulatory considerations. Curr Drug Deliv. 2011;8:691–702.

    CAS  PubMed  Google Scholar 

  2. 2.

    Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2:289–95.

    CAS  PubMed  Google Scholar 

  3. 3.

    Gomez-Orellana I. Strategies to improve oral drug bioavailability. Expert Opin Drug Deliv. 2005;2:419–33.

    CAS  PubMed  Google Scholar 

  4. 4.

    Kingston DG, Snyder JP. The quest for a simple bioactive analog of paclitaxel as a potential anticancer agent. Acc Chem Res. 2014;47:2682–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chandra S. Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol. 2012;95:47–59.

    CAS  PubMed  Google Scholar 

  6. 6.

    Stage TB, Bergmann TK, Kroetz DL. Clinical pharmacokinetics of paclitaxel monotherapy: an updated literature review. Clin Pharmacokinet. 2018;57:7–19.

    CAS  PubMed  Google Scholar 

  7. 7.

    Kearns CM, Gianni L, Egorin MJ. Paclitaxel pharmacokinetics and pharmacodynamics. Semin Oncol. 1995;22:16–23.

    CAS  PubMed  Google Scholar 

  8. 8.

    Sparreboom A, van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A. 1997;94:2031–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Neslihan Gursoy R, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–82.

    CAS  Google Scholar 

  10. 10.

    Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Singh B, Bandyopadhyay S, Beg S, Katare OP. Handling poorly bioavailable drugs using nanoemulsifying drug delivery systems. Pharm Rev. 2011:91–8.

  12. 12.

    Singh B, Bandopadhyay S, Kapil R, Singh R, Katare O. Self-emulsifying drug delivery systems (SEDDS): formulation development, characterization, and applications. Crit Rev Ther Drug Carrier Syst. 2009;26:427–521.

    CAS  PubMed  Google Scholar 

  13. 13.

    Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond). 2010;5:1595–616.

    CAS  Google Scholar 

  14. 14.

    Singh B, Beg S, Khurana RK, Sandhu PJS, Kaur R, Katare OP. Recent advances in self-emulsifying drug delivery systems (SEDDS). Crit Rev Ther Drug Carrier Syst. 2014;31:121–85.

    CAS  PubMed  Google Scholar 

  15. 15.

    O'Driscoll CM. Lipid-based formulations for intestinal lymphatic delivery. Eur J Pharm Sci. 2002;15:405–15.

    CAS  PubMed  Google Scholar 

  16. 16.

    Lo JT, Chen BH, Lee TM, Han J, Li JL. Self-emulsifying O/W formulations of paclitaxel prepared from mixed nonionic surfactants. J Pharm Sci. 2010;99:2320–32.

    CAS  PubMed  Google Scholar 

  17. 17.

    Sandhu PS, Beg S, Mehta F, Singh B, Trivedi P. Novel dietary lipid-based self-nanoemulsifying drug delivery systems of paclitaxel with p-gp inhibitor: implications on cytotoxicity and biopharmaceutical performance. Expert Opin Drug Deliv. 2015;12:1809–22.

    PubMed  Google Scholar 

  18. 18.

    Patel K, Patil A, Mehta M, Gota V, Vavia P. Medium chain triglyceride (MCT) rich, paclitaxel loaded self nanoemulsifying preconcentrate (PSNP): a safe and efficacious alternative to Taxol. J Biomed Nanotechnol. 2013;9:1996–2006.

    CAS  PubMed  Google Scholar 

  19. 19.

    Zhang XN, Tang LH, Gong JH, Yan XY, Zhang Q. An alternative paclitaxel self-emulsifying microemulsion formulation: preparation, pharmacokinetic profile, and hypersensitivity evaluation. PDA J Pharm Sci Technol. 2006;60:89–94.

    CAS  PubMed  Google Scholar 

  20. 20.

    Veltkamp SA, Thijssen B, Garrigue JS, Lambert G, Lallemand F, Binlich F, et al. A novel self-microemulsifying formulation of paclitaxel for oral administration to patients with advanced cancer. Br J Cancer. 2006;95:729–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Lionberger RA, Lee SL, Lee L, Raw A, Yu LX. Quality by design: concepts for ANDAs. AAPS J. 2008;10:268–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16:771–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Beg S, Akhter S, Rahman M, Rahman Z. Perspectives of quality by design approach in nanomedicines development. Curr Nanomed. 2017;7:191–7.

    CAS  Google Scholar 

  24. 24.

    Singh B, Kapil R, Nandi M, Ahuja N. Developing oral drug delivery systems using formulation by design: vital precepts, retrospect and prospects. Expert Opin Drug Deliv. 2011;8:1341–60.

    CAS  Google Scholar 

  25. 25.

    Singh B, Kumar R, Ahuja N. Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst. 2005;22:27–105.

    CAS  Google Scholar 

  26. 26.

    Singh B, Beg S, Raza K. Developing “optimized” drug products employing “designed” experiments. Chem Ind Digest. 2013;23:70–6.

    Google Scholar 

  27. 27.

    Jain A, Kaur R, Beg S, Kushwah V, Jain S, Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res. 2018;8:670–92.

    CAS  PubMed  Google Scholar 

  28. 28.

    Beg S, Katare OP, Singh B. Formulation by design approach for development of ultrafine self-nanoemulsifying systems of rosuvastatin calcium containing long-chain lipophiles for hyperlipidemia management. Colloids Surf B Biointerfaces. 2017;159:869–79.

    CAS  PubMed  Google Scholar 

  29. 29.

    Khurana RK, Beg S, Burrow AJ, Vashishta RK, Katare OP, Kaur S, et al. Enhancing biopharmaceutical performance of an anticancer drug by long chain PUFA based self-nanoemulsifying lipidic nanomicellar systems. Eur J Pharm Biopharm. 2017;121:42–60.

    CAS  PubMed  Google Scholar 

  30. 30.

    Sandhu PS, Kumar R, Beg S, Jain S, Kushwah V, Katare OP, et al. Natural lipids enriched self-nano-emulsifying systems for effective co-delivery of tamoxifen and naringenin: systematic approach for improved breast cancer therapeutics. Nanomedicine. 2017;13:1703–13.

    CAS  PubMed  Google Scholar 

  31. 31.

    Tripathi CB, Beg S, Kaur R, Shukla G, Bandopadhyay S, Singh B. Systematic development of optimized SNEDDS of artemether with improved biopharmaceutical and antimalarial potential. Drug Deliv. 2016;23:3209–23.

    CAS  PubMed  Google Scholar 

  32. 32.

    Beg S, Sandhu PS, Batra RS, Khurana RK, Singh B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv. 2014;22:765–84.

    PubMed  Google Scholar 

  33. 33.

    Beg S, Jena SS, Patra Ch N, Rizwan M, Swain S, Sruti J, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces. 2013;101:414–23.

    CAS  PubMed  Google Scholar 

  34. 34.

    Beg S, Sharma G, Thanki K, Jain S, Katare OP, Singh B. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm. 2015;493:466–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Beg S, Swain S, Singh HP, Patra Ch N, Rao ME. Development, optimization, and characterization of solid self-nanoemulsifying drug delivery systems of valsartan using porous carriers. AAPS PharmSciTech. 2012;13:1416–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Beg S, Jena SS, Patra Ch N, Rizwan M, Swain S, Sruti J, et al. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf B Biointerfaces. 2013;101:414–23.

    CAS  PubMed  Google Scholar 

  37. 37.

    Lee SH, Yoo SD, Lee KH. Rapid and sensitive determination of paclitaxel in mouse plasma by high-performance liquid chromatography. J Chromatogr B. 1999;724:357–63.

    CAS  Google Scholar 

  38. 38.

    Bandyopadhyay S, Beg S, Katare OP, Sharma G, Singh B. QbD-oriented development of self-nanoemulsifying drug delivery systems (SNEDDS) of valsartan with improved biopharmaceutical performance. Curr Drug Deliv. 2015;12:544–63.

    CAS  PubMed  Google Scholar 

  39. 39.

    Bandyopadhyay S, Katare OP, Singh B. Optimized self nano-emulsifying systems of ezetimibe with enhanced bioavailability potential using long chain and medium chain triglycerides. Colloids Surf B Biointerfaces. 2012;100:50–61.

    CAS  PubMed  Google Scholar 

  40. 40.

    Daniel WW. Biostatistics: a foundation for analysis in the health sciences. 5th ed. New York: Wiley & Sons; 1991.

    Google Scholar 

  41. 41.

    Singh B, Kaur A, Dhiman S, Garg B, Khurana RK, Beg S. QbD-enabled development of novel stimuli-responsive gastroretentive systems of acyclovir for improved patient compliance and biopharmaceutical performance. AAPS PharmSciTech. 2016;17:454–65.

    CAS  PubMed  Google Scholar 

  42. 42.

    Shah NH, Carvajal MT, Patel CI, Infeld MH, Malick AW. Self-emulsifying drug delivery systems (SEDDS) with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs. Int J Pharm. 1994;106:15–23.

    CAS  Google Scholar 

  43. 43.

    Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kang BK, Chon SK, Kim SH, Jeong SY, Kim MS, Cho SH, et al. Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm. 2004;286:147–56.

    CAS  PubMed  Google Scholar 

  45. 45.

    Xi J, Chang Q, Chan CK, Meng ZY, Wang GN, Sun JB, et al. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPS PharmSciTech. 2009;10:172–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Cuine JF, Charman WN, Pouton CW, Edwards GA, Porter CJ. Increasing the proportional content of surfactant (Cremophor EL) relative to lipid in self-emulsifying lipid-based formulations of danazol reduces oral bioavailability in beagle dogs. Pharm Res. 2007;24:748–57.

    CAS  PubMed  Google Scholar 

  47. 47.

    Grove M, Mullertz A, Nielsen JL, Pedersen GP. Bioavailability of seocalcitol II: development and characterisation of self-microemulsifying drug delivery systems (SMEDDS) for oral administration containing medium and long chain triglycerides. Eur J Pharm Sci. 2006;28:233–42.

    CAS  PubMed  Google Scholar 

  48. 48.

    Deckelbaum RJ, Hamilton JA, Moser A, Bengtsson-Olivecrona G, Butbul E, Carpentier YA, et al. Medium-chain versus long-chain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanisms of lipase action. Biochemistry. 1990;29:1136–42.

    CAS  PubMed  Google Scholar 

  49. 49.

    Mullertz A, Ogbonna A, Ren S, Rades T. New perspectives on lipid and surfactant based drug delivery systems for oral delivery of poorly soluble drugs. J Pharm Pharmacol. 2010;62:1622–36.

    CAS  PubMed  Google Scholar 

  50. 50.

    Date AA, Nagarsenker MS. Design and evaluation of self-nanoemulsifying drug delivery systems (SNEDDS) for cefpodoxime proxetil. Int J Pharm. 2007;329:166–72.

    CAS  PubMed  Google Scholar 

  51. 51.

    Taha EI, Al-Saidan S, Samy AM, Khan MA. Preparation and in vitro characterization of self-nanoemulsified drug delivery system (SNEDDS) of all-trans-retinol acetate. Int J Pharm. 2004;285:109–19.

    CAS  PubMed  Google Scholar 

  52. 52.

    Beg S, Sandhu PS, Batra RS, Khurana RK, Singh B. QbD-based systematic development of novel optimized solid self-nanoemulsifying drug delivery systems (SNEDDS) of lovastatin with enhanced biopharmaceutical performance. Drug Deliv. 2015;22:765–84.

    CAS  PubMed  Google Scholar 

  53. 53.

    Johnson DA, Amidon GL. Determination of intrinsic membrane transport parameters from perfused intestine experiments: a boundary layer approach to estimating the aqueous and unbiased membrane permeabilities. J Theor Biol. 1988;131:93–106.

    CAS  PubMed  Google Scholar 

  54. 54.

    Madan J, Chawla G, Arora V, Malik R, Bansal AK. Unbiased membrane permeability parameters for gabapentin using boundary layer approach. AAPS J. 2005;7:E224–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Oh DM, Curl RL, Amidon GL. Estimating the fraction dose absorbed from suspensions of poorly soluble compounds in humans: a mathematical model. Pharm Res. 1993;10:264–70.

    CAS  PubMed  Google Scholar 

  56. 56.

    Chen Y, Li G, Wu X, Chen Z, Hang J, Qin B, et al. Self-microemulsifying drug delivery system (SMEDDS) of vinpocetine: formulation development and in vivo assessment. Biol Pharm Bull. 2008;31:118–25.

    CAS  PubMed  Google Scholar 

  57. 57.

    Sun M, Zhai X, Xue K, Hu L, Yang X, Li G, et al. Intestinal absorption and intestinal lymphatic transport of sirolimus from self-microemulsifying drug delivery systems assessed using the single-pass intestinal perfusion (SPIP) technique and a chylomicron flow blocking approach: linear correlation with oral bioavailabilities in rats. Eur J Pharm Sci. 2011;43:132–40.

    CAS  Google Scholar 

  58. 58.

    Flesch G, Muller P, Lloyd P. Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur J Clin Pharmacol. 1997;52:115–20.

    CAS  PubMed  Google Scholar 

  59. 59.

    Saydam M, Takka S. Bioavailability file: valsartan. FABAD. J Pharm Sci. 2007;32:185–96.

    Google Scholar 

  60. 60.

    Zhao G, Duan J, Xie Y, Lin G, Luo H, Li G, et al. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L. Drug Dev Ind Pharm. 2012;39:1037–45.

    PubMed  Google Scholar 

  61. 61.

    Thomas N, Holm R, Mullertz A, Rades T. In vitro and in vivo performance of novel supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS). J Control Release. 2012;160:25–32.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The corresponding author gratefully acknowledges the generosity of M/s Stat-Ease Inc., Minneapolis, USA, for providing software support along with felicitation with “Stat-Ease QbD Performance Award 2014” for his exemplary contribution in the QbD-based drug delivery research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bhupinder Singh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editor: Sanyog Jain

Electronic supplementary material

ESM 1

(DOCX 876 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beg, S., Kaur, R., Khurana, R.K. et al. QbD-Based Development of Cationic Self-nanoemulsifying Drug Delivery Systems of Paclitaxel with Improved Biopharmaceutical Attributes. AAPS PharmSciTech 20, 118 (2019). https://doi.org/10.1208/s12249-019-1319-x

Download citation

KEY WORDS

  • Taxanes
  • Cancer
  • Quality by design
  • Nanomedicines
  • Optimization
  • Intestinal perfusion