Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets) Using 3D Printing Technology: Quality by Design to Optimize Drug Release and Extraction


Opioid abuse is a growing problem and has become a national health crisis over the past decade in the USA. Oral ingestion, snorting, and injection are the most commonly employed routes of abuse for an immediate release product. To circumvent these issues, we have developed an egg-shaped tablet (egglet) using fused deposition modeling (FDM) 3D printing technology. Drug-loaded polymeric filaments (1.5 mm) were prepared using hot melt extrusion (HME) followed by printing into egglets of different sizes and infill densities. Based on printability and crush resistance, polyvinyl alcohol (PVA) was found to be the most suitable polymer for the preparation of abuse deterrent egglets. Further, egglets were evaluated and optimized for mechanical manipulation using household equipment, milling, particle size distribution, solvent extraction, and drug release as per the FDA guidance (November 2017). A multifactorial design was used to optimize egglets for solvent extraction and drug release. Extreme hardness (> 500 N) and very large particle size (> 1 mm) on mechanical manipulation confirmed the snorting deterring property while less than 15% drug extraction in 5 min (% Sext) demonstrated the deterrence for injection abuse. Quality target product profile D85 < 30 min and % Sext < 15 was achieved with egglets of 6 mm diameter, 45% infill density, and 15% w/w drug loading. Dose of drug can be easily customized by varying dimension and infill density without altering the composition. HME coupled with FDM 3D printing could be a promising tool in the preparation of patient-tailored, immediate release abuse deterrent formulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Rahman Z, Yang Y, Korang-Yeboah M, Siddiqui A, Xu X, Ashraf M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502(1–2):138–50.

    CAS  PubMed  Google Scholar 

  2. 2.

    Maincent J, Zhang F. Recent advances in abuse-deterrent technologies for the delivery of opioids. Int J Pharm. 2016;510(1):57–72.

    CAS  PubMed  Google Scholar 

  3. 3.

    Rahman Z, Zidan AS, Korang-Yeboah M, Yang Y, Siddiqui A, Shakleya D, et al. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Int J Pharm. 2017;517(1–2):303–11.

    CAS  PubMed  Google Scholar 

  4. 4.

    Schaeffer T. Abuse-deterrent formulations, an evolving technology against the abuse and misuse of opioid analgesics. J Med Toxicol. 2012;8(4):400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Nalamachu SR, Shah B. Abuse of immediate-release opioids and current approaches to reduce misuse, abuse, and diversion. Postgrad Med. 2018:1–7.

  6. 6.

    Xu X, Gupta A, Al-Ghabeish M, Calderon SN, Khan MA. Risk based in vitro performance assessment of extended release abuse deterrent formulations. Int J Pharm. 2016;500(1–2):255–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Food U, Administration D. Guidance for industry: abuse-deterrent opioids–evaluation and labeling. Silver Spring: US Department of Health and Human Services; 2015.

    Google Scholar 

  8. 8.

    Food U, Administration D. Guidance for industry: general principles for evaluating the abuse deterrence of generic solid oral opioid drug products. Silver Spring: US Department of Health and Human Services; 2016.

    Google Scholar 

  9. 9.

    Katz NP, Adams EH, Chilcoat H, Colucci RD, Comer SD, Goliber P, et al. Challenges in the development of prescription opioid abuse-deterrent formulations. Clin J Pain. 2007;23(8):648–60.

    PubMed  Google Scholar 

  10. 10.

    Cohen JP, Mendoza M, Roland C. Challenges involved in the development and delivery of abuse-deterrent formulations of opioid analgesics. Clin Ther. 2018;40(2):334–44.

    CAS  PubMed  Google Scholar 

  11. 11.

    Maddineni S, Battu SK, Morott J, Soumyajit M, Repka MA. Formulation optimization of hot-melt extruded abuse deterrent pellet dosage form utilizing design of experiments. J Pharm Pharmacol. 2014;66(2):309–22.

    CAS  PubMed  Google Scholar 

  12. 12.

    Pergolizzi JV Jr, Raffa RB, Taylor R Jr, Vacalis S. Abuse-deterrent opioids: an update on current approaches and considerations. Curr Med Res Opin. 2018;34(4):711–23.

    CAS  PubMed  Google Scholar 

  13. 13.

    Peacock A, Larance B, Bruno R, Pearson SA, Buckley NA, Farrell M, et al. Post-marketing studies of pharmaceutical opioid abuse-deterrent formulations: a framework for research design and reporting. Addiction. 2018.

  14. 14.

    Alexander L, Mannion RO, Weingarten B, Fanelli RJ, Stiles GL. Development and impact of prescription opioid abuse deterrent formulation technologies. Drug Alcohol Depend. 2014;138:1–6.

    PubMed  Google Scholar 

  15. 15.

    Khan MF, Gharibo C. Abuse deterrent opioids. Tech Reg Anesth Pain Manag. 2010;14(2):99–103.

    Google Scholar 

  16. 16.

    Marnoor SA. Abuse deterrent opioid formulations: a review. Res J Pharm Dosage Forms Technol. 2016;8(2):135.

    Google Scholar 

  17. 17.

    Boyce H, Smith D, Byrn S, Saluja B, Qu W, Gurvich VJ, et al. In vitro assessment of nasal insufflation of comminuted drug products designed as abuse deterrent using the vertical diffusion cell. AAPS PharmSciTech. 2018:1–14.

  18. 18.

    Severtson SG, Ellis MS, Kurtz SP, Rosenblum A, Cicero TJ, Parrino MW, et al. Sustained reduction of diversion and abuse after introduction of an abuse deterrent formulation of extended release oxycodone. Drug Alcohol Depend. 2016;168:219–29.

    CAS  PubMed  Google Scholar 

  19. 19.

    Katz N, Dart RC, Bailey E, Trudeau J, Osgood E, Paillard F. Tampering with prescription opioids: nature and extent of the problem, health consequences, and solutions. Am J Drug Alcohol Abuse. 2011;37(4):205–17.

    PubMed  Google Scholar 

  20. 20.

    Wening K, Schwier S, Stahlberg HJ, Galia E. Application of hot-melt extrusion technology in immediate-release abuse-deterrent formulations. J Opioid Manag. 2017;13(6):473–84.

    PubMed  Google Scholar 

  21. 21.

    Cicero TJ, Ellis MS, Kasper ZA. Relative preferences in the abuse of immediate-release versus extended-release opioids in a sample of treatment-seeking opioid abusers. Pharmacoepidemiol Drug Saf. 2017;26(1):56–62.

    CAS  PubMed  Google Scholar 

  22. 22.

    Iwanicki JL, Severtson SG, McDaniel H, Rosenblum A, Fong C, Cicero TJ, et al. Abuse and diversion of immediate release opioid analgesics as compared to extended release formulations in the United States. PLoS One. 2016;11(12):e0167499.

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Beaumont J, Cassidy TA, Oyedele N, Guenther S, Mickle TC. Characterizing abuse progression of immediate-release hydrocodone combination products. J Drug Issues. 2018:0022042618756691.

  24. 24.

    Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci. 2018;115:11–8.

    CAS  PubMed  Google Scholar 

  25. 25.

    Goyanes A, Buanz AB, Hatton GB, Gaisford S, Basit AW. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur J Pharm Biopharm. 2015;89:157–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Okwuosa TC, Stefaniak D, Arafat B, Isreb A, Wan K-W, Alhnan MA. A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets. Pharm Res. 2016;33(11):2704–12.

    CAS  PubMed  Google Scholar 

  27. 27.

    Skowyra J, Pietrzak K, Alhnan MA. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur J Pharm Sci. 2015;68:11–7.

    CAS  PubMed  Google Scholar 

  28. 28.

    Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets. AAPS PharmSciTech:1–7.

  31. 31.

    Administration UFD. Center for drug evaluation and research. Application number: 200534Orig1s000. Clinical pharmacology and biopharmaceutics review (s). 2010.

  32. 32.

    Kasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernäs H, Hussain AS, et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm. 2004;1(1):85–96.

    CAS  PubMed  Google Scholar 

  33. 33.

    Laboratories R. RIOMET (metformin hydrochloride) [package insert]. Jacksonville: Ranbaxy Laboratories Inc; 2017.

    Google Scholar 

  34. 34.

    Pharma P. OXYCONTIN® (oxycodone hydrochloride) [package insert]. Stamford: Purdue Pharma L.P.; 2007.

    Google Scholar 

  35. 35.

    Palekar S, Nukala PK, Mishra SM, Kipping T, Patel K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int J Pharm. 2018.

  36. 36.

    Patki M, Patel K. Development of a solid supersaturated self-nanoemulsifying preconcentrate (S-superSNEP) of fenofibrate using dimethylacetamide and a novel co-processed excipient. Drug Dev Ind Pharm. 2018;(just-accepted):1–44.

  37. 37.

    Lang B, McGinity JW, Williams RO. Hot-melt extrusion – basic principles and pharmaceutical applications. Drug Dev Ind Pharm. 2014;40(9):1133–55.

    CAS  PubMed  Google Scholar 

  38. 38.

    Hajare AA, Patil VA. Formulation and characterization of metformin hydrochloride floating tablets. Asian J Pharm Res. 2012;2(3):111–7.

    Google Scholar 

  39. 39.

    Corporation EM. Tech Info Parteck MXP_EN_MSIG 2016 [Available from: http://www.emdmillipore.com/US/en/products/small-molecule-pharmaceuticals/formulation/solid-dosage-form/parteck-excipients/parteck-mxp/Ieyb.qB.lAcAAAFYLEQeWww_,nav. Accessed 11 Jan 2018.

  40. 40.

    De Jaeghere W, De Beer T, Van Bocxlaer J, Remon JP, Vervaet C. Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm. 2015;492(1–2):1–9.

    PubMed  Google Scholar 

  41. 41.

    2016. Available from: http://www.emdmillipore.com/US/en/product/Parteck-SI-150-Sorbitol,MDA_CHEM-103583. Accessed 11 Jan 2018.

  42. 42.

    De Jaeghere W, De Beer T, Van Bocxlaer J, Remon JP, Vervaet C. Hot-melt extrusion of polyvinyl alcohol for oral immediate release applications. Int J Pharm. 2015;492(1):1–9.

    PubMed  Google Scholar 

  43. 43.

    Cailly-Dufestel V, Herry C, Bacon J, Oury P, Inventors; Google Patents, assignee. Crush-resistant tablets intended to prevent accidental misuse and unlawful diversion 2010.

  44. 44.

    Fransén N, Björk E, Nyström C. Development and characterisation of interactive mixtures with a fine-particulate mucoadhesive carrier for nasal drug delivery. Eur J Pharm Biopharm. 2007;67(2):370–6.

    PubMed  Google Scholar 

  45. 45.

    Bartholomäus J, Schwier S, Brett M, Stahlberg H, Galia E, Strothmann K. New abuse deterrent formulation (ADF) technology for immediate-release opioids. Drug Dev Deliv. 2013;13(8):76–81.

    Google Scholar 

  46. 46.

    Food U, Administration D. Center for drug evaluation and research. Application number: 206162Orig1s000. Clinical pharmacology and biopharmaceutics review (s). 2014.

  47. 47.

    Kumar V, Dixon D, Tewari D, Wadgaonkar DB, inventors; Google Patents, assignee. Extended release opioid abuse deterrent compositions and methods of making same 2012.

  48. 48.

    Chobisa D, Patel K, Monpara J, Patel M, Vavia P. Development and characterization of an organic solvent free, proliposomal formulation of Busulfan using quality by design approach. Int J Pharm. 2018;535(1–2):360–70.

    CAS  PubMed  Google Scholar 

  49. 49.

    Mishra SM, Rohera BD. An integrated, quality by design (QbD) approach for design, development and optimization of orally disintegrating tablet formulation of carbamazepine. Pharm Dev Technol. 2017;22(7):889–903.

    CAS  PubMed  Google Scholar 

  50. 50.

    Saurí J, Millán D, Suñé-Negre J, Colom H, Ticó J, Miñarro M, et al. Quality by design approach to understand the physicochemical phenomena involved in controlled release of captopril SR matrix tablets. Int J Pharm. 2014;477(1–2):431–41.

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ketan Patel.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Guest Editors: Heather Boyce, Steve R. Byrn, and Stephen W. Hoag

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nukala, P.K., Palekar, S., Patki, M. et al. Abuse Deterrent Immediate Release Egg-Shaped Tablet (Egglets) Using 3D Printing Technology: Quality by Design to Optimize Drug Release and Extraction. AAPS PharmSciTech 20, 80 (2019). https://doi.org/10.1208/s12249-019-1298-y

Download citation


  • 3D printing technology
  • abuse deterrent dosage form
  • quality by design
  • dose customization
  • hot melt extrusion