Skip to main content

Advertisement

Log in

Antioxidant Potential and Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Orotic Acid-Loaded Gum Arabic Nanoparticles

  • Research Article
  • Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Orotic acid (OA) nanoparticles were prepared using the freeze-drying method. The antihypertensive activity and antioxidant capacity of OA and orotic acid-loaded gum arabic nanoparticles (OAGANPs) were examined using the angiotensin-converting enzyme (ACE), 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO), and β-carotene assays, as well as the quantification of total phenolic content (TPC). The DPPH and NO scavenging activities of OAGANPs were significantly higher than those of the OA solution. The β-carotene bleaching assay of OAGANPs showed a dose-dependent trend, while 500 μg/ml was significantly more effective than the other concentrations, which exerted 63.4% of the antioxidant activity. The in vitro antihypertensive assay revealed that the OAGANPs exhibited the most potent ACE inhibition activity, when compared to the OA solution. Hence, results revealed the potential of preparing the OA as a nanoparticle formulation in enhancing the antioxidant and antihypertensive properties compared to the OA solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Usman MS, Hussein MZ, Fakurazi S, et al. Gadolinium-doped gallic acid-zinc/aluminium-layered double hydroxide/gold theranostic nanoparticles for a bimodal magnetic resonance imaging and drug delivery system. Nano. 2017;7:244. https://doi.org/10.3390/nano7090244.

    Article  CAS  Google Scholar 

  2. Ali HA, Press D. Controlled release and angiotensin converting enzyme inhibition properties of an antihypertensive drug based on a perindopril erbumine layered double hydroxide nanocomposite. Int J Nanomedicine. 2012;7:2129–41. https://doi.org/10.2147/IJN.S30461.

    Article  CAS  PubMed Central  Google Scholar 

  3. Kovanda F, Jindova E, Doušová B, Kolousek D, Plestil J, et al. Layered double hydroxides intercalated with organic anions and their application in preparation of ldh/polymer nanocomposites. Acta Geodyn Geomater. 2009;6:111–9 https://www.irsm.cas.cz/materialy/acta_content/2009_01/8_Kovanda.pdf. Accessed January 2009

  4. Swierczewska M, Liu G, Chen X, et al. High-sensitivity nanosensors for biomarker detection w. Chem Soc Rev. 2011;41:1–10. https://doi.org/10.1039/c1cs15238f.

    Article  CAS  Google Scholar 

  5. Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res. 2011;44(10):863–74. https://doi.org/10.1021/ar200085c.

    Article  CAS  PubMed  Google Scholar 

  6. Links DA. Paramagnetic nanoparticle T 1 and T 2 MRI contrast agents. Phys Chem Chem Phys. 2012;14:12687–700. https://doi.org/10.1039/c2cp41357d.

    Article  CAS  Google Scholar 

  7. Jeong T, Seok K, Chang Y, Ho G, et al. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents. Curr Top Med Chem. 2013;13:422–33.

    Article  Google Scholar 

  8. Usman MS, Hussein MZ, Fakurazi S, Ahmad Saad FF, et al. Gadolinium-based layered double hydroxide and graphene oxide nano-carriers for magnetic resonance imaging and drug delivery. Chem Cent J. 2017;11(1):1–10. https://doi.org/10.1186/s13065-017-0275-3.

    Article  CAS  Google Scholar 

  9. Elgqvist J. Nanoparticles as theranostic vehicles in experimental and clinical applications—focus on prostate and breast cancer. Int J Mol Sci. 2017;18:1–53. https://doi.org/10.3390/ijms18051102.

    Article  CAS  Google Scholar 

  10. Oberdörster G, Oberdörster E, Oberdörster J, et al. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39. https://doi.org/10.1289/ehp.7339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vij N, Min T, Marasigan R, Belcher CN, Mazur S, Ding H, et al. Development of PEGylated PLGA nanoparticle for controlled and sustained drug delivery in cystic fibrosis. J Nanobiotechnology. 2010:1–18. https://doi.org/10.1186/1477-3155-8-22.

  12. Chen J, Patil S, Seal S, Mcginnis JF, et al. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1:142–50.

    Article  CAS  PubMed  Google Scholar 

  13. Manuel P, Atul A, Sudip N, et al. Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Communications. 2008:552–6. https://doi.org/10.1002/smll.200700824.

  14. Mousa SA. Nanotechnology-based detection and targeted therapy in cancer: nano-bio paradigms and applications. Cancers. 2011;3:2888–903. https://doi.org/10.3390/cancers3032888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohanpuria P, Rana NK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:507–17. https://doi.org/10.1007/s11051-007-9275-x.

    Article  CAS  Google Scholar 

  16. Li G, Le G, Shi Y, Shrestha S, et al. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res. 2004;24:469–86. https://doi.org/10.1016/j.nutres.2003.10.014.

    Article  CAS  Google Scholar 

  17. Unger T. The role of the renin–angiotensin system in the development of cardiovascular disease. Am J Cardiol. 2002;l((1)):3–9. https://doi.org/10.1016/S0002-9149(01)02321-9.

    Article  Google Scholar 

  18. Cadenas E, Davies KJA, Adenas ENC, et al. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29:222–30. https://doi.org/10.1016/S0891-5849(00)00317-8.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson DMW, Eastwood MA. The safety of gum arabic as a food additive and its energy value as an ingredient: a brief review. J Hum Nutr Diet. 1988;2:137–44.

    Article  Google Scholar 

  20. Motlagh S, Ravines P, Karamallah KA, Ma Q, et al. The analysis of Acacia gums using electrophoresis. Food Hydrocoll. 2006;20:848–54. https://doi.org/10.1111/j.1365-277X.1989.tb00017.x.

    Article  CAS  Google Scholar 

  21. Ali A, Maqbool M, Alderson PG, Zahid N, et al. Effect ofgum arabic as an edible coating on antioxidant capacity of tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol Technol. 2013;76:119–24. https://doi.org/10.1016/j.postharvbio.2012.09.011.

    Article  CAS  Google Scholar 

  22. Gamal AM, Mostafa AM, Al-Shabanah OA, Al-Bekairi AM, Nagi MN, et al. Protective effect of arabic gum against acetaminophen-induced hepatotoxicity in mice. Pharmacol Res. 2003;48:631–5. https://doi.org/10.1016/S1043-6618(03)00226-3.

    Article  CAS  Google Scholar 

  23. Palmer S. Role of nitric oxide in intestinal water and electrolyte transport. Gut. 1999;44:143–7. https://doi.org/10.1136/gut.44.2.143.

    Article  Google Scholar 

  24. Rehman KU, Wingertzahn MA, Teichberg S, Harper RG, Wapnir RA, et al. Gum arabic (GA) modifies paracellular water and electrolyte transport in the small intestine. Dig Dis Sci. 2003;48:755–60.

    Article  CAS  PubMed  Google Scholar 

  25. Rehman K, Wingertzahn MA, Harper RG, Wapnir RA, et al. Proabsorptive action of gum arabic: regulation of nitric oxide metabolism in the basolateral potassium channel of the small intestine. J Pediatr Gastroenterol Nutr. 2001;32:529–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ali AA, Ali KE, Fadlalla AE, Khalid KE. The effects of gum arabic oral treatment on the metabolic profile of chronic renal failure patients under regular haemodialysis in Central Sudan. Nat Prod Res. 2008;22:12–21. https://doi.org/10.1080/14786410500463544.

    Article  CAS  PubMed  Google Scholar 

  27. Ali BH, Alqarawi AA, Ahmed IH, et al. Does treatment with gum arabic affect experimental chronic renal failure in rats? Fundam Clin Pharmacol. 2004;18:327–39. https://doi.org/10.1111/j.1472-8206.2004.00241.x.

    Article  CAS  PubMed  Google Scholar 

  28. Verbeken MD. Exudate gums: occurrence, production, and applications. Appl Microbiol Biotechnol. 2003:10–21. https://doi.org/10.1007/s00253-003-1354-z.

  29. Arabia S, Arabia S. Protective effects of oral arabic gum administration on gentamicin-induced nephrotoxicity in rats histopathological examination. Pharmacol Res. 2002;46:445–51. https://doi.org/10.1016/S1043661802001251.

    Article  Google Scholar 

  30. Hueso-Urefia F, Moreno-Carretero MN, Salas-Peregrin JM, Inorgfinica DDQ, De Ciencias F, De Granada U, et al. Silver (I), palladium (II), platinurn (II) and platinum (IV) complexes with isoorotate and 2-thioisoorotate ligands: synthesis, I.R. and N.M.R. spectra, thermal behaviour and antimicrobial activity. Transit Met Chem. 1995;269:262–9.

    Article  Google Scholar 

  31. Dodin G, Dubois J. Tautomerism of orotic acid dianion. Effect of calcium and magnesium cations on the tautomeric constant and on tautomerization dynamics. J Am Chem Soc. 1980:3049–56. https://doi.org/10.1021/ja00529a030.

  32. Kostova I, Peica N, Kiefer W, et al. Theoretical and spectroscopic studies of lanthanum (III) complex of 5-aminoorotic acid. Chem Phys. 2006;327:494–505. https://doi.org/10.1016/j.chemphys.2006.05.029.

    Article  CAS  Google Scholar 

  33. Kostova I, Valcheva-Traykova M. New samarium (III) complex of 5-aminoorotic acid with antioxidant activity. Appl Organomet Chem. 2015;29:815–24. https://doi.org/10.1002/aoc.3374.

    Article  CAS  Google Scholar 

  34. Tan C, Xie J, Zhang X, Cai J, Xia S, et al. Food hydrocolloids polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 2016;57:236–45. https://doi.org/10.1016/j.foodhyd.2016.01.021.

    Article  CAS  Google Scholar 

  35. Ranneh Y, Ali F, Al QM, Esa NM, Ismail A, et al. The inhibitory activity of cocoa phenolic extract against pro-inflammatory mediators secretion induced by lipopolysaccharide in RAW 264.7 cells. Springer plus. 2016:547. https://doi.org/10.1186/s40064-016-2138-0.

  36. Shon M, Kim T, Sung N, et al. Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochaetaceae) extracts. Food Chem. 2003;82:593–7. https://doi.org/10.1016/S0308-8146(03)00015-3.

    Article  CAS  Google Scholar 

  37. Barros L, Baptista P, Correia DM, Morais JS, Ferreira IC. Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J Agric Food Chem. 2007;55:4781–8. https://doi.org/10.1021/jf070407o.

    Article  CAS  PubMed  Google Scholar 

  38. Barros L, Queiro B, Ferreira ICFR, Baptista P, et al. Total phenols, ascorbic acid, B-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007;103:413–9. https://doi.org/10.1016/j.foodchem.2006.07.038.

    Article  CAS  Google Scholar 

  39. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82. https://doi.org/10.1016/j.jcis.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  40. Andrzej LD, Dorota W, Barbara B. The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). Food Sci Technol. 2006;39(3):308–15. https://doi.org/10.1016/j.lwt.2005.01.005.

    Article  CAS  Google Scholar 

  41. Ara N, Nur H. In vitro antioxidant activity of methanolic leaves and flowers extracts of Lippia Alba. Res J Med Med Sci. 2009;4(1):107–10.

    CAS  Google Scholar 

  42. Kong H, Yang J, Zhang Y, Fang Y, et al. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. Int J Biol Macromol [Internet]. 2014;65:155–62. https://doi.org/10.1016/j.ijbiomac.2014.01.011.

    Article  CAS  Google Scholar 

  43. Kumaran A, Joel R. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006;97:109–14. https://doi.org/10.1016/j.foodchem.2005.03.032.

    Article  CAS  Google Scholar 

  44. Ao JIB, Ai YIC, Un MEIS, Ang GUW, Orke HAC, et al. Anthocyanins, flavonols, and free radical scavenging activity of Chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem. 2005:2–7. https://doi.org/10.1021/jf048312z.

  45. Soren S, Jena SR, Samanta L, et al. Antioxidant potential and toxicity study of the cerium oxide nanoparticles synthesized by microwave-mediated synthesis. Appl Biochem Biotechnol. 2015:148–61. https://doi.org/10.1007/s12010-015-1734-8.

  46. Zaid RM, Chin F, Yi E, Teo L, Ng E, Feng K, et al. Reduction of graphene oxide nanosheets by natural beta carotene and its potential use as supercapacitor electrode. Arab J Chem. 2015;8(4):560–9. https://doi.org/10.1016/j.arabjc.2014.11.036.

    Article  CAS  Google Scholar 

  47. Matsumura Y, Chikako Satak EM. Interaction of gum arabic, maltodextrin and pullulan with lipids in emulsions. Biosci Biotechnol Biochem. 2000;64:1827–35. https://doi.org/10.1271/bbb.64.1827.

    Article  CAS  PubMed  Google Scholar 

  48. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, et al. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc [Internet]. 2014;18(4):356–63. https://doi.org/10.1016/j.jscs.2013.09.011.

    Article  CAS  Google Scholar 

  49. Felipe C, Rodrigues C, Matias S, Alencar D, Thomazini M, De Carvalho JC, et al. Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum arabic and OSA starch-based carrier systems. Food Bioprod Process. 2012;91(1):28–36. https://doi.org/10.1016/j.fbp.2012.08.006.

Download references

Acknowledgment

The authors would like to acknowledge the Universiti Putra Malaysia and Department of Chemical and Environmental Engineering for awarding the funds to conduct this research under project number GP-IPS/2016/9505500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aslina Hussain.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Additional information

Guest Editors: Mahavir Bhupal Chougule, Vijaykumar B. Sutariya and Sudip K. Das

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, A., Hussain, S.A., Abdullah, N. et al. Antioxidant Potential and Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Orotic Acid-Loaded Gum Arabic Nanoparticles. AAPS PharmSciTech 20, 53 (2019). https://doi.org/10.1208/s12249-018-1238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-018-1238-2

KEY WORDS

Navigation