Effects of Drug-Polymer Interactions on Tablet Properties During the Development of Abuse-Deterrent Dosage Forms

Abstract

The objective of the present study is to understand the effects of drug-PEO interactions during the thermal treatment of polyethylene oxide (PEO)-based, directly compressed, abuse-deterrent formulations (ADFs). The drugs studied were dextromethorphan HBr monohydrate, ketoprofen, promethazine HCl, and anhydrous theophylline. Thermal treatment above the melting point of PEO resulted in tablets with higher crushing strength (> 500 N). It was observed that drug-PEO interactions during thermal treatment (80°C) led to solubilization of the incorporated drug. Drugs with higher solubility in the molten PEO, when added at higher weight fractions, interfered with the process of tablet densification which led to an increase in tablet dimensions and created defects in the fused matrix. These changes resulted in the formation of a more porous matrix. Thermal treatment led to a decrease in PEO crystallinity. The decreased crystallinity led to differences in the hydration and dissolution properties of the PEO. The change in dissolution properties of PEO accompanied with the dimensional and microstructural changes resulted in a greater drug release for some of the studied drugs. In conclusion, although thermal treatment above the melting point of PEO is an efficient manufacturing process in imparting crush-resistant features, drug-PEO interactions during the thermal treatment and the impact of thermal treatment on the properties of formulation components may impact tablet properties and lead to potential performance differences.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Rudd RA, Seth P, David F, Scholl L. Increases in drug and opioid-involved overdose deaths—United States, 2010–2015. MMWR Morb Mortal Wkly Rep. 2016;65:1445–52. https://doi.org/10.15585/mmwr.mm655051e1.

    Article  PubMed  Google Scholar 

  2. 2.

    Lessenger JE, Feinberg SD. Abuse of prescription and over-the-counter medications. J Am Board Fam Med. 2008;21(1):45–54. https://doi.org/10.3122/jabfm.2008.01.070071.

    Article  PubMed  Google Scholar 

  3. 3.

    Compton WM, Volkow ND. Abuse of prescription drugs and the risk of addiction. Drug Alcohol Depend. 2006;83:S4–7. https://doi.org/10.1016/j.drugalcdep.2005.10.020.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Katz N, Dart RC, Bailey E, Trudeau J, Osgood E, Paillard F. Tampering with prescription opioids: nature and extent of the problem, health consequences, and solutions. Am J Drug Alcohol Abuse. 2011;37(4):205–17. https://doi.org/10.3109/00952990.2011.569623.

    Article  PubMed  Google Scholar 

  5. 5.

    Mastropietro DJ, Omidian H. Current approaches in tamper-resistant and abuse-deterrent formulations. Drug Dev Ind Pharm. 2013;39(5):611–24. https://doi.org/10.3109/03639045.2012.680468.

    CAS  Article  Google Scholar 

  6. 6.

    Katz N. Abuse-deterrent opioid formulations: are they a pipe dream? Curr Rheumatol Rep. 2008;10(1):11–8. https://doi.org/10.1007/s11926-008-0003-z.

    Article  PubMed  Google Scholar 

  7. 7.

    Mastropietro DJ, Omidian H. Abuse-deterrent formulations: part 1 – development of a formulation-based classification system. Expert Opin Drug Metab Toxicol. 2015;11(2):193–204. https://doi.org/10.1517/17425255.2015.979786.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Herry C, Monti A, Vauzelle-Kervroedan F, Oury P, Michel L. Reducing abuse of orally administered prescription opioids using formulation technologies. J Drug Deliv Sci Technol. 2013;23(2):103–10.

    CAS  Article  Google Scholar 

  9. 9.

    Webster LR, Markman J, Cone EJ, Niebler G. Current and future development of extended-release, abuse-deterrent opioid formulations in the United States. Postgrad Med J. 2017;129(1):102–10. https://doi.org/10.1080/00325481.2017.1268902.

    Article  Google Scholar 

  10. 10.

    Maincent J, Zhang F. Recent advances in abuse-deterrent technologies for the delivery of opioids. Int J Pharm. 2016;510(1):57–72. https://doi.org/10.1016/j.ijpharm.2016.06.012.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Muppalaneni S, Mastropietro DJ, Omidian H. Crush resistance and insufflation potential of poly(ethylene oxide)-based abuse deterrent formulations. Expert Opin Drug Deliv. 2016;13(10):1375–82. https://doi.org/10.1080/17425247.2016.1211638.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Royce AE. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms. United States Patent US. 1993; 5,273,758.

  13. 13.

    Bartholomaeus JH, Arkenau-Marić E, Galia E. Opioid extended-release tablets with improved tamper-resistant properties. Expert Opin Drug Deliv. 2012;9(8):879–91.

    CAS  Article  Google Scholar 

  14. 14.

    Mastropietro DJ, Omidian H. Abuse-deterrent formulations: part 2: commercial products and proprietary technologies. Expert Opin Pharmacother. 2015;16(3):305–23. https://doi.org/10.1517/14656566.2014.970175.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ma L, Deng L, Chen J. Applications of poly (ethylene oxide) in controlled release tablet systems: a review. Drug Dev Ind Pharm. 2014;40(7):845–51. https://doi.org/10.3109/03639045.2013.831438.

    CAS  Article  Google Scholar 

  16. 16.

    Rahman Z, Yang Y, Korang-Yeboah M, Siddiqui A, Xu X, Ashraf M, et al. Assessing impact of formulation and process variables on in-vitro performance of directly compressed abuse deterrent formulations. Int J Pharm. 2016;502(1–2):138–50. https://doi.org/10.1016/j.ijpharm.2016.02.029.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Upadhye SB, Properties R-SAR. Applications of polyethylene oxide and Ethylcellulose for tamper resistance and controlled drug delivery. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York, NY: Springer New York; 2013. p. 145–58.

    Google Scholar 

  18. 18.

    Storrow AB, Magoon MR, Norton J. The dextromethorphan defense: dextromethorphan and the opioid screen. Acad Emerg Med. 1995;2(9):791–4. https://doi.org/10.1111/j.1553-2712.1995.tb03273.x.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Dextromethorphan HBr solubility. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2010/021879Orig1s000ChemR.pdf. Accessed 14 Sept 2018.

  20. 20.

    Dextromethorphan HBr melting point. Available from: https://www.scbt.com/scbt/product/dextromethorphan-hydrobromide-125-69-9. Accessed 14 Sept 2018.

  21. 21.

    Ketoprofen solubility and melting point. Available from: National Center for Biotechnology Information. PubChem Compound Database; CID=3825, https://pubchem.ncbi.nlm.nih.gov/compound/3825. Accessed 14 Sept 2018.

  22. 22.

    Promethazine HCl solubility. Available from: http://www.selleckchem.com/datasheet/promethazine-hcl-DataSheet.html. Accessed 14 Sept 2018.

  23. 23.

    Promethazine HCl melting point. Available from: National Center for Biotechnology Information. PubChem Compound Database; CID=6014, https://pubchem.ncbi.nlm.nih.gov/compound/6014. Accessed 2 Oct 2018.

  24. 24.

    Theophylline solubility and melting point. Available from: National Center for Biotechnology Information. PubChem Compound Database; CID=2153, https://pubchem.ncbi.nlm.nih.gov/compound/2153. Accessed 14 Sept 2018.

  25. 25.

    Dextromethorphan HBr decomposition temperature. Available from: https://www.spectrumchemical.com/MSDS/D3100.pdf. Accessed 14 Sept 2018.

  26. 26.

    Wesolowski M, Szynkaruk P. Thermal decomposition of methylxanthines. J Therm Anal Calorim. 2008;93(3):739–46. https://doi.org/10.1007/s10973-008-9138-4.

    CAS  Article  Google Scholar 

  27. 27.

    Tiţa D, Fuliaş A, Tiţa B. Thermal stability of ketoprofen. J Therm Anal Calorim. 2013;111(3):1979–85. https://doi.org/10.1007/s10973-011-2147-8.

    CAS  Article  Google Scholar 

  28. 28.

    Achar B, Ashok M. Solid state electrical conductivity and thermal degradation studies on some phenothiazine derivatives. J Phys Chem Solids. 2007;68(2):175–81. https://doi.org/10.1016/j.jpcs.2006.10.006.

    CAS  Article  Google Scholar 

  29. 29.

    Colacio-Rodriguez E, Salas-Peregrin J, Ruiz-Sanchez J, Garcia-Mejias E. Thermal studies on purine complexes. IX. Palladium (II) complexes with 8-alkyl substituted theophyllines. Thermochim Acta. 1985;89:159–64. https://doi.org/10.1016/0040-6031(93)85035-8.

    CAS  Article  Google Scholar 

  30. 30.

    Tiţa D, Fuliaş A, Tiţa B. Thermal stability of ketoprofen—active substance and tablets. J Therm Anal Calorim. 2011;105(2):501–8. https://doi.org/10.1007/s10973-010-1187-9.

    CAS  Article  Google Scholar 

  31. 31.

    Consultation documents. Dextromethorphani hydrobromidum. Dextromethorphan HBr decomposition temperature. Available from: World Health Organization. https://www.who.int/medicines/areas/quality_safety/quality_assurance/2014-05-23Revision_DextromethorphanHBr-QAS14-585_22052014.pdf. Accessed 14 Sept 2018.

  32. 32.

    Nijenhuis A, Colstee E, Grijpma D, Pennings A. High molecular weight poly (L-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1996;37(26):5849–57. https://doi.org/10.1016/S0032-3861(96)00455-7.

    CAS  Article  Google Scholar 

  33. 33.

    Mura P, Manderioli A, Bramanti G, Furlanetto S, Pinzauti S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int J Pharm. 1995;119(1):71–9. https://doi.org/10.1016/0378-5173(94)00374-E.

    CAS  Article  Google Scholar 

  34. 34.

    Malaj L, Censi R, Mozzicafreddo M, Pellegrino L, Angeletti M, Gobetto R, et al. Influence of relative humidity on the interaction between different aryl propionic acid derivatives and poly (vinylpyrrolydone) K30: evaluation of the effect on drug bioavailability. Int J Pharm. 2010;398(1–2):61–72. https://doi.org/10.1016/j.ijpharm.2010.07.024.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Suzuki E, Shimomura K, Sekiguchi K. Thermochemical study of theophyline and its hydrate. Chem Pharm Bull. 1989;37(2):493–7. https://doi.org/10.1248/cpb.37.493.

    CAS  Article  Google Scholar 

  36. 36.

    Thumma S, Repka M. Compatibility studies of promethazine hydrochloride with tablet excipients by means of thermal and non-thermal methods. Die Pharmazie-an international. J Pharm Sci. 2009;64(3):183–9. https://doi.org/10.1691/ph.2009.8268.

    CAS  Article  Google Scholar 

  37. 37.

    Boyce H, Smith D, Byrn S, Saluja B, Qu W, Gurvich VJ, et al. In vitro assessment of nasal insufflation of comminuted drug products designed as abuse deterrent using the vertical diffusion cell. AAPS PharmSciTech. 2018;19(4):1744–57. https://doi.org/10.1208/s12249-017-0947-2.

    CAS  Article  Google Scholar 

  38. 38.

    Xu X, Gupta A, Al-Ghabeish M, Calderon SN, Khan MA. Risk based in vitro performance assessment of extended release abuse deterrent formulations. Int J Pharm. 2016;500(1–2):255–67. https://doi.org/10.1016/j.ijpharm.2016.01.031.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Rao M, Ranpise A, Borate S, Thanki K. Mechanistic evaluation of the effect of sintering on Compritol® 888 ATO matrices. AAPS PharmSciTech. 2009;10(2):355–60. https://doi.org/10.1208/s12249-009-9211-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Billa N, Yuen K-H, Peh K-K. Diclofenac release from Eudragit-containing matrices and effects of thermal treatment. Drug Dev Ind Pharm. 1998;24(1):45–50. https://doi.org/10.3109/03639049809082351.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Azarmi S, Ghaffari F, Löbenberg R, Nokhodchi A. Mechanistic evaluation of the effect of thermal-treating on Eudragit RS matrices. Il Farmaco. 2005;60(11–12):925–30. https://doi.org/10.1016/j.farmac.2005.07.009.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Bhattacharjya S, Wurster DE. Investigation of the drug release and surface morphological Properties of film-coated pellets, and physical, thermal and mechanical Properties of free films as a function of various curing conditions. AAPS PharmSciTech. 2008;9(2):449–57. https://doi.org/10.1208/s12249-008-9058-4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zhang GG, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Adv Drug Deliv Rev. 2004;56(3):371–90. https://doi.org/10.1016/j.addr.2003.10.009.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Schachter DM, Xiong J, Tirol GC. Solid state NMR perspective of drug–polymer solid solutions: a model system based on poly (ethylene oxide). Int J Pharm. 2004;281(1–2):89–101. https://doi.org/10.1016/j.ijpharm.2004.05.024.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Van Renterghem J, Dhondt H, Verstraete G, De Bruyne M, Vervaet C, De Beer T. The impact of the injection mold temperature upon polymer crystallization and resulting drug release from immediate and sustained release tablets. Int J Pharm. 2018;541(1–2):108–16. https://doi.org/10.1016/j.ijpharm.2018.01.053.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Van Renterghem J, Vervaet C, De Beer T. Rheological characterization of molten polymer-drug dispersions as a predictive tool for pharmaceutical hot-melt extrusion Processability. Pharm Res. 2017;34(11):2312–21. https://doi.org/10.1007/s11095-017-2239-7.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Chakravarty P, Suryanarayanan R, Govindarajan R. Phase transformation in thiamine hydrochloride tablets: influence on tablet microstructure, physical properties, and performance. J Pharm Sci. 2012;101(4):1410–22. https://doi.org/10.1002/jps.23020.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Shojaee S, Nokhodchi A, Maniruzzaman M. Evaluation of the drug solubility and rush ageing on drug release performance of various model drugs from the modified release polyethylene oxide matrix tablets. Drug Deliv Transl Res. 2017;7(1):111–24. https://doi.org/10.1007/s13346-016-0344-5.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Crowley MM, Zhang F, Koleng JJ, McGinity JW. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials. 2002;23(21):4241–8. https://doi.org/10.1016/S0142-9612(02)00187-4.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maureen D. Donovan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

** - Supplementary Information

Guest Editors: Heather Boyce, Steve R. Byrn, and Stephen W. Hoag

Electronic Supplementary Material

ESM 1

(DOCX 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meruva, S., Donovan, M.D. Effects of Drug-Polymer Interactions on Tablet Properties During the Development of Abuse-Deterrent Dosage Forms. AAPS PharmSciTech 20, 93 (2019). https://doi.org/10.1208/s12249-018-1221-y

Download citation

KEY WORDS

  • abuse-deterrent formulations (ADFs)
  • polyethylene oxide (PEO)
  • thermal treatment
  • drug-PEO interactions
  • tablet properties and drug release