Xylan from Pineapple Stem Waste: a Potential Biopolymer for Colonic Targeting of Anti-inflammatory Agent Mesalamine


We have successfully conjugated mesalamine (5-aminosalicylic acid, 5-ASA) with xylan, a biopolymer isolated from pineapple stem waste, to form xylan-5-ASA conjugate. The biopolymer was used to provide colon-targeting properties for 5-ASA, a golden standard anti-inflammatory agent commonly used for ulcerative colitis treatment. A series of data from FTIR spectroscopy, UV-Vis spectrophotometry, and HPLC confirmed the xylan-5-ASA conjugate formation. To ensure successful colon targeting properties, in vitro and in vivo drug release studies after oral administration of xylan-5-ASA conjugate to Wistar rats were performed. Xylan-5-ASA conjugate was able to retain 5-ASA release in the upper gastrointestinal tract fluid simulation but rapidly released 5-ASA in the rat colon fluid simulation. In vivo release profile shows a very low peak plasma concentration, reached at 6 h after xylan-5-ASA conjugate administration. The delayed release and the lower bioavailability of 5-ASA from xylan-5-ASA conjugate administration compared to free 5-ASA administration confirmed the successful local colon delivery of 5-ASA using xylan-5-ASA conjugate. The administration of xylan-5-ASA conjugate also exhibited greater efficacy in recovering 2,4,6-trinitrobenzene sulfonic acid-induced colon ulcer compared to free 5-ASA administration. Taken together, xylan isolated from pineapple stem waste is promising to obtain colon targeting property for 5-ASA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Chen H. Chemical composition and structure of natural lignocellulose. In: Chen H, editor. Biotechnology of lignocellulose: theory and practice. Dordrecht: Springer; 2014. p. 25–71.

    Google Scholar 

  2. 2.

    da Silva AE, Marcelino HR, Gomes MCS, Oliveira EE, Nagashima T Jr, Egito EST. Xylan, a promising hemicellulose for pharmaceutical use. In: Verbeek CJR, editor. Products and applications of biopolymers. Rijeka: InTech; 2012. p. 62–5.

    Google Scholar 

  3. 3.

    Scocca J, Lee YC. The composition and structure of the carbohydrate of pineapple stem bromelain. J Biol Chem. 1969;244(18):4852–63.

    CAS  PubMed  Google Scholar 

  4. 4.

    Oliveira EE, Silva AE, Júnior TN, Gomes MC, Aguiar LM, Marcelino HR, et al. Xylan from corn cobs, a promising polymer for drug delivery: production and characterization. Bioresour Technol. 2010;101(14):5402–6.

    CAS  PubMed  Google Scholar 

  5. 5.

    Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev. 1973;25(4):451–523.

    CAS  PubMed  Google Scholar 

  6. 6.

    Sauraj, Kumar SU, Gopinath P, Negi YS. Synthesis and bio-evaluation of xylan-5-fluorouracil-1-acetic acid conjugates as prodrugs for colon cancer treatment. Carbohydr Polym. 2017;157:1442–3 1447–1449.

    CAS  PubMed  Google Scholar 

  7. 7.

    Sauraj, Kumar SU, Kumar V, Priyadarshi R, Gopinath P, Negi YS. pH-responsive prodrug nanoparticles based on xylan-curcumin conjugate for the efficient delivery of curcumin in cancer therapy. Carbohydr Polym. 2018;188:252–3 256–257.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kong W, Gao C, Hu S, Ren J, Zhao L, Sun R. Xylan-modified-based hydrogels with temperature/pH dual sensitivity and controllable drug delivery behavior. Materials. 2017;10(304):1–3 9–10.

    Google Scholar 

  9. 9.

    Rachmilewitz D, Karmeli F, Schwartz LW, Simon PL. Effect of aminophenols (5-ASA and 4-ASA) on colonic interleukin-1 generation. Gut. 1992;33(7):929–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Stevens C, Lipman M, Fabry S, Moscovitch-Lopatin M, Almawi W, Keresztes S, et al. 5-Aminosalicylic acid abrogates T-cell proliferation by blocking interleukin-2 production in peripheral blood mononuclear cells. J Pharmacol Exp Ther. 1995;272(1):399–406.

    CAS  PubMed  Google Scholar 

  11. 11.

    Peskar BM, Dreyling KW, May B, Schaarschmidt K, Goebell H. Possible mode of action of 5-aminosalicylic acid. Dig Dis Sci. 1987;32(12):51S–6S.

    CAS  PubMed  Google Scholar 

  12. 12.

    Ahnfelt-Rønne I, Nielsen OH, Christensen A, Langholz E, Binder V, Riis P. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology. 1989;98(5):1162–9.

    Google Scholar 

  13. 13.

    Yamada T, Volkmer C, Grisham MB. Antioxidant properties of 5-ASA: potential mechanism for its anti-inflammatory activity. Can J Gastroenterol. 1990;4(7):295–302.

    Google Scholar 

  14. 14.

    Tama H, Kachur JF, Grisham MB, Gaginella TS. Scavenging effect of 5-aminosalicylic acid on neutrophil-derived oxidants: Possible contribution to the mechanism of action in inflammatory bowel disease. Biochem Pharmacol. 1991;41(6–7):1001–6.

    Google Scholar 

  15. 15.

    Iacucci M, de Silva S, Ghosh S. Mesalazine in inflammatory bowel disease: a trendy topic once again? Can J Gastroenterol. 2010;24(2):127–33.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Katz S, Lichtenstein GR, Safdi MA. 5-ASA dose-response, maximizing efficacy and adherence. Gastroenterol Hepatol. 2010;6(2):1–16.

    Google Scholar 

  17. 17.

    Head KA, Jurenka JS. Inflammatory bowel disease part I: ulcerative colitis – pathophysiology and conventional and alternative treatment options. Altern Med Rev. 2003;8(3):247–83.

    PubMed  Google Scholar 

  18. 18.

    Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65:800–10 Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773489/pdf/nihms453288.pdf.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    (724) Drug release. USP 38–NF 33. 38th ed. Rockville, MD: United States Pharmacopeial Convention; 2015. p. 497–504.

  20. 20.

    Dangi AA, Ganure AL, Divya J. Formulation and evaluation of colon targeted drug delivery system of levetiracetam using pectin as polymeric carrier. J Appl Pharm Sci. 2013;3:78–87.

    Google Scholar 

  21. 21.

    Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27–31.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rachmawati H, Pradana AT, Safitri D, Adnyana IK. Multiple functions of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer: in vivo kinetic profile and anti-ulcerative colitis analysis in animal model. Pharmaceutics. 2017;9(3):1–13.

    Google Scholar 

  23. 23.

    Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig. 1993;69:238–49.

    CAS  PubMed  Google Scholar 

  24. 24.

    Zou M, Okamoto H, Cheng G, Hao X, Sun J, Cui F, et al. Synthesis and properties of polysaccharide prodrugs of 5-aminosalicylic acid as potential colon-specific delivery system. Eur J Pharm Biopharm. 2005;59:155–60.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kumar S, Negi YS. Corn cob xylan-based nanoparticles: ester prodrug of 5-aminosalicylic acid for possible targeted delivery of drug. J Pharm Sci Res. 2012;4(12):1995–2003.

    CAS  Google Scholar 

  26. 26.

    Colom X, Carrillo F, Nogues F, Garriga P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym Degrad Stab. 2003;80(3):543–9.

    CAS  Google Scholar 

  27. 27.

    Dong MW. Modern HPLC for practicing scientist. Hoboken: Wiley; 2006.

    Google Scholar 

  28. 28.

    Macfarlane GT, Macfarlane S. Fermentation in the human large intestine: its physiologic consequences and the potential contribution of prebiotics. J Clin Gastroenterol. 2011;45:S120–7.

    CAS  PubMed  Google Scholar 

  29. 29.

    Rajesh A, Bharat C, Sangeeta A. Oral colon targeted drug delivery system: a review on current and novel perspectives. J Pharm Innov. 2012;1(5):6–12.

    CAS  Google Scholar 

  30. 30.

    Honga P, Iakiviaka M, Dodd D, Zhanga M, Mackiea RI, Canna I. Two new xylanases with different substrate specificities from the human gut bacterium bacteroides intestinalis DSM 17393. Appl Environ Microbiol. 2014;80(7):2084–93.

    Google Scholar 

  31. 31.

    Bondesen S, Rasmussen SN, Madsen JR, Nielsen OH, Lauritsen K, Binder V, et al. 5-aminosalicylic acid in the treatment of inflammatory bowel disease. Acta Med Scand. 1987;221:227–42.

    CAS  PubMed  Google Scholar 

  32. 32.

    Molavi DW. The practice of surgical pathology: a beginner’s guide to the diagnostic process. Cham: Springer International Publishing AG; 2018. p. 74.

    Google Scholar 

  33. 33.

    Brynskov J, Nielsen OH, Ahnfelt-Rønne I, Bendtzen K. Cytokines (immunoinflammatory hormones) and their natural regulation in inflammatory bowel disease (Crohn's disease and ulcerative colitis): a review. Dig Dis. 1994;12(5):290–304.

    CAS  PubMed  Google Scholar 

  34. 34.

    Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Neeb L, Hellen P, Boehnke C, Hoffmann J, Schuh-Hofer S, Dirnagl U, et al. IL- 1β stimulates COX-2 dependent PGE2 synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One. 2011;6(3):1–9.

    Google Scholar 

  36. 36.

    Ren K, Torres R. Role of interleukin- 1β during pain and inflammation. Brain Res Rev. 2008;60(1):57–64.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wang D, DuBois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2. https://doi.org/10.1038/sigtrans.2017.23.

Download references


The project was financially supported by Bandung Institute of Technology (ITB) through “Innovative Research Grant” scheme year 2017.

Author information



Corresponding author

Correspondence to Heni Rachmawati.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed. School of Pharmacy, Bandung Institute of Technology, Indonesia. The approval number is 305/UN6.C.10/PN/2017 (15/3/2017).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 18 kb)


(XLSX 38 kb)


(PDF 34 kb)


(PDF 34 kb)


(PDF 34 kb)


(PDF 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anindya, A.L., Oktaviani, R.D., Praevina, B.R. et al. Xylan from Pineapple Stem Waste: a Potential Biopolymer for Colonic Targeting of Anti-inflammatory Agent Mesalamine. AAPS PharmSciTech 20, 112 (2019). https://doi.org/10.1208/s12249-018-1205-y

Download citation


  • xylan
  • 5-ASA
  • colon targeting
  • colonic drug delivery
  • ulcerative colitis