Skip to main content
Log in

Physicochemical and In Vitro Evaluation of Drug Delivery of an Antibacterial Synthetic Benzophenone in Biodegradable PLGA Nanoparticles

  • Research Article
  • Theme: Translational Multi-Disciplinary Approach for the Drug and Gene Delivery Systems
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability. It is therefore important to develop dosage forms which can address this disadvantage while also maintaining efficacy and potentially generating long-term exposures to minimize frequent dosing. Biodegradable nanoparticles provide one solution, and we describe here the encapsulation of the experimental benzophenone-based antibiotic, SV7. Poly-lactic-co-glycolic-acid (PLGA) nanoparticles were optimized for their physicochemical properties, their encapsulation efficiency, sustained drug release as well as antimicrobial activity. The optimized formulation contained particles smaller than 200 nm with a slightly negative zeta potential which released 39% of their drug load over 30 days. This formulation maintains the antibacterial activity of SV7 while minimizing the impact on mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ. 2001;79(8):780–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management. 2015;40(4):277–83.

    Google Scholar 

  3. Centers for Diseases Control and Prevention OoID. Antibiotic resistance threats in the United States, 2013. 2013. Available from: https://www.cdc.gov/drugresistance/threat-report-2013/.

  4. World Health Organization. Worldwide country situation analysis: response to antimicrobial resistance 2015. Available from: http://www.who.int/drugresistance/documents/situationanalysis/en/.

  5. Ciofu O, Tolker-Nielsen T, Jensen PO, Wang H, Hoiby N. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.

    Article  CAS  PubMed  Google Scholar 

  6. Spellberg B. The future of antibiotics. Critical care (London, England) 2014;18(3):228.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Iinuma M, Tosa H, Tanaka T, Kanamaru S, Asai F, Kobayashi Y, et al. Antibacterial activity of some Garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 1996;19(2):311–4.

    Article  CAS  PubMed  Google Scholar 

  8. Lokvam J, Braddock JF, Reichardt PB, Clausen TP. Two polyisoprenylated benzophenones from the trunk latex of Clusia grandiflora (Clusiaceae). Phytochemistry. 2000;55(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  9. Trusheva B, Popova M, Naydenski H, Tsvetkova I, Gregorio Rodriguez J, Bankova V. New polyisoprenylated benzophenones from Venezuelan propolis. Fitoterapia. 2004;75(7–8):683–9.

    Article  CAS  PubMed  Google Scholar 

  10. Tantapakul C, Phakhodee W, Ritthiwigrom T, Cheenpracha S, Prawat U, Deachathai S, et al. Rearranged benzophenones and prenylated xanthones from Garcinia propinqua twigs. J Nat Prod. 2012;75(9):1660–4.

    Article  CAS  PubMed  Google Scholar 

  11. Trisuwan K, Ritthiwigrom T. Benzophenone and xanthone derivatives from the inflorescences of Garcinia cowa. Arch Pharm Res. 2012;35(10):1733–8.

    Article  CAS  PubMed  Google Scholar 

  12. Khanum SA, Shashikanth S, Sudha BS. A facile synthesis and antimicrobial activity of 3-(2-aroylaryloxy)methyl-5-mercapto-4-phenyl-4H-1,2,4-triazole and 2-(2-aroylaryloxy)methyl-5-N-phenylamino-1,3,4-thiadiazole analogues. ScienceAsia. 2003;29:383–92.

    Article  CAS  Google Scholar 

  13. Khanum SA, Shashikanth S, Umesha S, Kavitha R. Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones. Eur J Med Chem. 2005;40(11):1156–62.

    Article  CAS  PubMed  Google Scholar 

  14. Organization. WH. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics 2017. Available from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1.

  15. Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, et al. Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One. 2014;9(3):e89614.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vooturi SK, Cheung CM, Rybak MJ, Firestine SM. Design, synthesis, and structure-activity relationships of benzophenone-based tetraamides as novel antibacterial agents. J Med Chem. 2009;52(16):5020–31.

    Article  CAS  PubMed  Google Scholar 

  17. Vooturi SK, Dewal MB, Firestine SM. Examination of a synthetic benzophenone membrane-targeted antibiotic. Org Biomol Chem. 2011;9(18):6367–72.

    Article  CAS  PubMed  Google Scholar 

  18. Vooturi SK, Firestine SM. Solution-phase parallel synthesis of novel membrane-targeted antibiotics. J Comb Chem. 2010;12(1):151–60.

    Article  CAS  PubMed  Google Scholar 

  19. Lipinski CA. Avoiding investment in doomed drugs, is poor solubility an industry wide problem? Curr Drug Discov. 2001:17–9.

  20. Company BDa. BBL TM Mueller Hinton II Broth (Cation Adjusted). Rev 12 [Internet]. 2012.

  21. Institute CaLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document M07-A9. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

  22. Merkel OM, Beyerle A, Beckmann BM, Zheng M, Hartmann RK, Stoger T, et al. Polymer-related off-target effects in non-viral siRNA delivery. Biomaterials. 2011;32(9):2388–98.

    Article  CAS  PubMed  Google Scholar 

  23. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  24. Khattak SF, Bhatia SR, Roberts SC. Pluronic F127 as a cell encapsulation material: utilization of membrane-stabilizing agents. Tissue Eng. 2005;11(5–6):974–83.

    Article  CAS  PubMed  Google Scholar 

  25. Chacon M, Molpeceres J, Berges L, Guzman M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. Eur J Pharm sci. 1999;8(2):99–107.

    Article  CAS  PubMed  Google Scholar 

  26. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

    CAS  PubMed  Google Scholar 

  27. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.

    Article  CAS  PubMed  Google Scholar 

  28. Conte C, Costabile G, d'Angelo I, Pannico M, Musto P, Grassia G, et al. Skin transport of PEGylated poly(epsilon-caprolactone) nanoparticles assisted by (2-hydroxypropyl)-beta-cyclodextrin. J Colloid Interface Sci. 2015;454:112–20.

    Article  CAS  PubMed  Google Scholar 

  29. Costabile G, d'Angelo I, Rampioni G, Bondi R, Pompili B, Ascenzioni F, et al. Toward repositioning niclosamide for antivirulence therapy of Pseudomonas aeruginosa lung infections: development of inhalable formulations through nanosuspension technology. Mol Pharm. 2015;12(8):2604–17.

    Article  CAS  PubMed  Google Scholar 

  30. d'Angelo I, Costabile G, Durantie E, Brocca P, Rondelli V, Russo A, et al. Hybrid lipid/polymer nanoparticles for pulmonary delivery of siRNA: development and fate upon in vitro deposition on the human epithelial airway barrier. J Aerosol Med Pulm Drug Deliv. 2018;31(3):170–81.

    Article  CAS  PubMed  Google Scholar 

  31. Hoda M, Sufi SA, Cavuturu B, Rajagopalan R. Stabilizers influence drug-polymer interactions and physicochemical properties of disulfiram-loaded poly-lactide-co-glycolide nanoparticles. Future Science OA. 2018;4(2):Fso263.

    Article  PubMed  Google Scholar 

  32. VAd M, Ricci-Júnior E. Encapsulation of naproxen in nanostructured system: structural characterization and in vitro release studies. Química Nova. 2011;34:933–9.

    Article  Google Scholar 

  33. Bian X, Liang S, John J, Hsiao CH, Wei X, Liang D, et al. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int J Nanomedicine. 2013;8:4521–31.

    PubMed  PubMed Central  Google Scholar 

  34. Sonam CH, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol. 2014;64:99–105.

    Article  CAS  PubMed  Google Scholar 

  35. Marslin G, Revina AM, Khandelwal VK, Balakumar K, Sheeba CJ, Franklin G. PEGylated ofloxacin nanoparticles render strong antibacterial activity against many clinically important human pathogens. Colloids Surf B: Biointerfaces. 2015;132:62–70.

    Article  CAS  PubMed  Google Scholar 

  36. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2–3):121–36.

    Article  CAS  PubMed  Google Scholar 

  37. Blanco-Prieto MJ, Besseghir K, Orsolini P, Heimgartner F, Deuschel C, Merkle HP, et al. Importance of the test medium for the release kinetics of a somatostatin analogue from poly(D,L-lactide-co-glycolide) microspheres. Int J Pharm. 1999;184(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Tao W, Chen Y, Chang D, Wang T, Zhang X, et al. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J Mater Sci Mater Med. 2015;26(4):165.

    Article  PubMed  Google Scholar 

  39. Fredenberg S, Reslow M, Axelsson A. Effect of divalent cations on pore formation and degradation of poly(D,L-lactide-co-glycolide). Pharm Dev Technol. 2007;12(6):563–72.

    Article  CAS  PubMed  Google Scholar 

  40. Fernandes P, Martens E. Antibiotics in late clinical development. Biochem Pharmacol. 2017;133:152–63.

    Article  CAS  PubMed  Google Scholar 

  41. Singh SB, Young K, Silver LL. What is an “ideal” antibiotic? Discovery challenges and path forward. Biochem Pharmacol. 2017;133:63–73.

    Article  CAS  PubMed  Google Scholar 

  42. Manca ML, Mourtas S, Dracopoulos V, Fadda AM, Antimisiaris SG. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Colloids Surf B: Biointerfaces. 2008;62(2):220–31.

    Article  CAS  PubMed  Google Scholar 

  43. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25(4):471–6.

    Article  CAS  PubMed  Google Scholar 

  44. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012;161(2):505–522.

    Article  CAS  PubMed  Google Scholar 

  45. Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine. 2013;8:747–65.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Geller DE, Madge S. Technological and behavioral strategies to reduce treatment burden and improve adherence to inhaled antibiotics in cystic fibrosis. Respir Med. 2011;105(Suppl 2):S24–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

OMM acknowledges the Wayne State University Start-Up grant and Innovation Fellowship grant. SMF acknowledges NIH grant R01AI109139 for support. GC acknowledges UniNa and Compagnia San Paolo in the frame of Programme STAR (CALL 2016). The Electron Microscopy Core Facility at Wayne State University is partially supported by NSF-MRI grant 0216084 and NSF-MRI grant 0922912. We are grateful to Dr. Zhi Mei for expert support with the SEM imaging of our samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivia M. Merkel.

Additional information

Guest Editors: Mahavir Bhupal Chougule, Vijaykumar B. Sutariya and Sudip K. Das

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costabile, G., Gasteyer, K.I., Nadithe, V. et al. Physicochemical and In Vitro Evaluation of Drug Delivery of an Antibacterial Synthetic Benzophenone in Biodegradable PLGA Nanoparticles. AAPS PharmSciTech 19, 3561–3570 (2018). https://doi.org/10.1208/s12249-018-1187-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1187-9

KEY WORDS

Navigation