Skip to main content
Log in

Amphotericin B Loaded Chitosan Nanoparticles: Implication of Bile Salt Stabilization on Gastrointestinal Stability, Permeability and Oral Bioavailability

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Through current investigation, we presented a lucrative way to formulate amphotericin B loaded bile salt stabilized carbohydrate polymer i.e. chitosan nanoparticles (NPs) for enhancing gastrointestinal stability of NPs thereby increasing the oral bioavailability of the drug. NPs were prepared using ionic gelation method, and stabilized using bile salt to provide gastric pH stability to chitosan NPs. NPs were optimized on different parameters such as particle size, encapsulation efficiency and estimated for their in vitro and in vivo performance. Developed NPs presented a higher stability in gastrointestinal milieu, reduced haemolytic toxicity and significantly higher uptake in Caco-2 cell lines followed by increased bioavailability as compared to naive drug, marketed formulation i.e. Fungizone® and uncoated chitosan NPs. Biochemical parameters and histology further substantiated the lower toxicity. In nutshell, the present research explored the bioadhesive and higher uptake potential of cationic carbohydrate polymer at the same time along with bile salts for stabilization of NPs in gastric milieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AmB:

Amphotericin B

AmB-CSCA NPs:

AmB loaded bile salt stabilized chitosan nanoparticles

ANOVA:

Analysis of variance

AUC:

Area under the curve

BUN:

Blood urea nitrogen

CA:

Sodium cholate

CS:

Chitosan

GI:

Gastrointestinal

HPLC:

High-performance liquid chromatography

kD:

Kilo dalton

NPs:

Nanoparticles

PDI:

Polydispersity index

RBC:

Red blood cells

RITC:

Rhodamine isothiocyanate

SEM:

Scanning electron microscopy

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

SLS:

Sodium lauryl sulphate

TEM:

Transmission electron microscope

TPP:

Tripolyphosphate

References

  1. Lipowsky R, Sackmann E. Structure and dynamics of membranes: I. from cells to vesicles/II. generic and specific interactions: Volume 1A, 1st Edition. New York: Elsevier; 1995.

  2. Saravolatz LD, Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard”. Clin Infect Dis. 2003;37(3):415–25.

    Article  Google Scholar 

  3. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.

    Article  CAS  PubMed  Google Scholar 

  4. Hiemenz JW, Walsh TJ. Lipid formulations of amphotericin B: recent progress and future directions. Clin Infect Dis. 1996;22(Supplement_2):S133–S44.

    Article  CAS  PubMed  Google Scholar 

  5. Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med. 1999;340(10):764–71.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhari MB, Desai PP, Patel PA, Patravale VB. Solid lipid nanoparticles of amphotericin B (AmbiOnp): in vitro and in vivo assessment towards safe and effective oral treatment module. Drug Deliv Transl Res. 2016;6(4):354–64.

    CAS  PubMed  Google Scholar 

  7. Jain S, Valvi PU, Swarnakar NK, Thanki K. Gelatin coated hybrid lipid nanoparticles for oral delivery of amphotericin B. Mol Pharm. 2012;9(9):2542–53.

    Article  CAS  PubMed  Google Scholar 

  8. Jain S, Yadav P, Swami R, Swarnakar NK, Kushwah V, Katiyar SS. Lyotropic liquid crystalline nanoparticles of amphotericin B: implication of phytantriol and glyceryl monooleate on bioavailability enhancement. AAPS PharmSciTech. 2018;19:1699–711.

    Article  CAS  PubMed  Google Scholar 

  9. Adler-Moore JP, Gangneux J-P, Pappas PG. Comparison between liposomal formulations of amphotericin B. Sabouraudia. 2016;54(3):223–31.

    Article  CAS  Google Scholar 

  10. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73(9):919–34.

    Article  CAS  PubMed  Google Scholar 

  11. Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.

    Article  CAS  Google Scholar 

  12. Artursson P, Lindmark T, Davis SS, Illum L. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm Res. 1994;11(9):1358–61.

    Article  CAS  PubMed  Google Scholar 

  13. Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31(7):603–32.

    Article  CAS  Google Scholar 

  14. Liu L, Zhou C, Xia X, Liu Y. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation. Int J Nanomedicine. 2016;11:761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, et al. Modified-chitosan nanoparticles: novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci. 2016;93:38–44.

    Article  CAS  PubMed  Google Scholar 

  16. Prego C, Garcia M, Torres D, Alonso M. Transmucosal macromolecular drug delivery. J Control Release. 2005;101(1):151–62.

    Article  CAS  PubMed  Google Scholar 

  17. Harde H, Agrawal AK, Jain S. Tetanus toxoids loaded glucomannosylated chitosan based nanohoming vaccine adjuvant with improved oral stability and immunostimulatory response. Pharm Res. 2015;32(1):122–34.

    Article  CAS  PubMed  Google Scholar 

  18. Harde H, Agrawal AK, Jain S. Development of stabilized glucomannosylated chitosan nanoparticles using tandem crosslinking method for oral vaccine delivery. Nanomedicine. 2014;9(16):2511–29.

    Article  CAS  PubMed  Google Scholar 

  19. Jain S, Sharma RK, Vyas S. Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization. J Pharm Pharmacol. 2006;58(3):303–10.

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal AK, Urimi D, Harde H, Kushwah V, Jain S. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015;5(127):105179–93.

    Article  CAS  Google Scholar 

  21. Mukhopadhyay P, Bhattacharya S, Nandy A, Bhattacharyya A, Mishra R, Kundu P. Assessment of in vivo chronic toxicity of chitosan and its derivates used as oral insulin carriers. Toxicol Res. 2015;4(2):281–90.

    Article  CAS  Google Scholar 

  22. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  23. Jonassen H, Kjøniksen A-L, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012;13(11):3747–56.

    Article  CAS  PubMed  Google Scholar 

  24. Sahariah P, Benediktssdóttir BE, Hjálmarsdóttir MÁ, Sigurjonsson OE, Sørensen KK, Thygesen MB, et al. Impact of chain length on antibacterial activity and hemocompatibility of quaternary N-alkyl and N, N-dialkyl chitosan derivatives. Biomacromolecules. 2015;16(5):1449–60.

    Article  CAS  PubMed  Google Scholar 

  25. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  CAS  PubMed  Google Scholar 

  26. Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B 2. Int J Biol Macromol. 2014;71:141–6.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Qin F, Lu M, Gao L, Yao X. The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. Polym Sci Ser A. 2017;59(3):376–83.

    Article  CAS  Google Scholar 

  28. Moghimipour E, Ameri A, Handali S. Absorption-enhancing effects of bile salts. Molecules. 2015;20(8):14451–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikov M, Fawcett J, Kuhajda K, Kevresan S. Pharmacology of bile acids and their derivatives: absorption promoters and therapeutic agents. Eur J Drug Metab Pharmacokinet. 2006;31(3):237–51.

    Article  CAS  PubMed  Google Scholar 

  30. Chiang C-H, Lai J-S, Yang K-H. The effects of pH and chemical enhancers on the percutaneous absorption of indomethacin. Drug Dev Ind Pharm. 1991;17(1):91–111.

    Article  CAS  Google Scholar 

  31. Winuprasith T, Chantarak S, Suphantharika M, He L, McClements DJ. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles. J Colloid Interface Sci. 2014;426:333–40.

    Article  CAS  PubMed  Google Scholar 

  32. Yu J-n, Zhu Y, Wang L, Peng M, Tong S-S, Cao X, et al. Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles. Acta Pharmacol Sin. 2010;31(6):759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jain S, Indulkar A, Harde H, Agrawal AK. Oral mucosal immunization using glucomannosylated bilosomes. J Biomed Nanotechnol. 2014;10(6):932–47.

    Article  CAS  PubMed  Google Scholar 

  34. Käuper P, Forrest M, editors. Chitosan-based nanoparticles by ionotropic gelation. Switzerland: XIVth International Workshop on Bioencapsulation; 2006.

    Google Scholar 

  35. Vertzoni M, Fotaki N, Nicolaides E, Reppas C, Kostewicz E, Stippler E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  36. Swami R, Singh I, Jeengar MK, Naidu V, Khan W, Sistla R. Adenosine conjugated lipidic nanoparticles for enhanced tumor targeting. Int J Pharm. 2015;486(1):287–96.

    Article  CAS  PubMed  Google Scholar 

  37. Mandal H, Katiyar SS, Swami R, Kushwah V, Katare PB, Meka AK, et al. ε-Poly-l-lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo. Int J Pharm. 2018;542(1–2):142–52.

    Article  CAS  PubMed  Google Scholar 

  38. Ma Z, Lim L-Y. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res. 2003;20(11):1812–9.

    Article  CAS  PubMed  Google Scholar 

  39. Ma O, Lavertu M, Sun J, Nguyen S, Buschmann MD, Winnik FM, et al. Precise derivatization of structurally distinct chitosans with rhodamine B isothiocyanate. Carbohydr Polym. 2008;72(4):616–24.

    Article  CAS  Google Scholar 

  40. Dora CP, Kushwah V, Katiyar SS, Kumar P, Pillay V, Suresh S, et al. Improved oral bioavailability and therapeutic efficacy of erlotinib through molecular complexation with phospholipid. Int J Pharm. 2017;534(1–2):1–13.

    Article  CAS  PubMed  Google Scholar 

  41. Jain S, Chauhan D, Jain A, Swarnakar N, Harde H, Mahajan R, et al. Stabilization of the nanodrug delivery systems by lyophilization using universal step-wise freeze drying cycle. Indian Patent Application No 2011;2559.

  42. Mattu C, Li R, Ciardelli G. Chitosan nanoparticles as therapeutic protein nanocarriers: the effect of ph on particle formation and encapsulation efficiency. Polym Compos. 2013;34(9):1538–45.

    Article  CAS  Google Scholar 

  43. Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 2006;7(2):E138–E43.

    Article  PubMed Central  Google Scholar 

  44. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci. 2013;110(26):10753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. O'Donnell MD, McGeeney K, FitzGerald O. Effect of free and conjugated bile salts on α-amylase activity. Enzyme. 1975;19:129–39.

    Article  CAS  PubMed  Google Scholar 

  46. Bhatia S, Kumar V, Sharma K, Nagpal K, Bera T. Significance of algal polymer in designing amphotericin B nanoparticles. Sci World J. 2014;2014:1–21.

    Google Scholar 

  47. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, et al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29(9):1233–41.

    Article  CAS  PubMed  Google Scholar 

  48. Italia J, Yahya M, Singh D, Kumar MR. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone®. Pharm Res. 2009;26(6):1324–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, NIPER for providing the necessary infrastructure and facilities and Department of Science & Technology (DST), Government of India, New Delhi, and financial support. Rajan Swami is grateful to Science and Engineering Research Board (SERB), DST, GOI, New Delhi, for providing research fellowship. Varun Kushwah is appreciative to CSIR, GOI, New Delhi, for providing fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Ethics declarations

Conflict of Interest

The authors report no financial interest that might pose a potential, perceived, or real conflict.

Electronic Supplementary Material

ESM 1

(DOCX 24.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, S., Reddy, C.S.K., Swami, R. et al. Amphotericin B Loaded Chitosan Nanoparticles: Implication of Bile Salt Stabilization on Gastrointestinal Stability, Permeability and Oral Bioavailability. AAPS PharmSciTech 19, 3152–3164 (2018). https://doi.org/10.1208/s12249-018-1153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1153-6

KEY WORDS

Navigation