Skip to main content
Log in

Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

To overcome the poor dissolution of telmisartan (TMS) at weak acidic pH, amorphous alkalinized TMS (AAT) was prepared by introducing sodium hydroxide as a selective alkalizer. AAT-containing polymeric solid dispersions were prepared by a solvent evaporation method; these solid dispersions were AAT-PEG, AAT-PVP, AAT-POL, and AAT-SOL for the polymers of PEG 6000, PVP K30, Poloxamer 407, and Soluplus, respectively. The characteristics of the different formulations were observed by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. To compare the supersaturation behavior, a dissolution test was performed at 37 ± 0.5 °C either in 900 ml (plain condition) or 500 ml (limited condition) of pH 6.8-simulated intestinal fluid used as a medium. AAT-SOL exhibited enhanced dissolution, indicating the probability of extended supersaturation in the limited condition. AAT-SOL was further formulated into a tablet by introducing other excipients, Vivapur 105 and Croscarmellose, as a binder and superdisintegrant, respectively, using a direct compression method. The selected AAT-SOL tablet was superior to Micardis (the reference product) in the aspect of supersaturation maintenance during dissolution in the limited condition, suggesting that it is a promising candidate for practical development that can replace the commercial product in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yusuf S, Diener HC, Sacco RL, Cotton D, Ôunpuu S, Lawton WA, Palesch Y, Albers GW, Bath P, Bornstein N, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. New Engl J Med 2016;359:1225–1237.

    Article  CAS  Google Scholar 

  2. Stangier J, Su CAPF, Roth W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J Int Med Res. 2000;28:149–67.

    Article  CAS  Google Scholar 

  3. Zhang Y, Jiang T, Zhang Q, Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: drug loading and release property. Eur J Pharm Biopharm. 2010;76:17–23.

    Article  CAS  Google Scholar 

  4. Tran PHL, Tran HTT, Lee BJ. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J Control Release. 2008;129:59–65.

    Article  CAS  Google Scholar 

  5. Antoncic L, Copar A. U.S. patent application no. 11 2009;718, 838.

  6. Zhong L, Zhu X, Yu B, Su W. Influence of alkalizers on dissolution properties of telmisartan in solid dispersions prepared by cogrinding. Drug Dev Ind Pharm. 2014;40:1660–9.

    Article  CAS  Google Scholar 

  7. Kothawade SN, Kadam NR, Aragade PD, Baheti DG. Formulation and characterization of telmisatan solid dispersions. Int J Pharmtech Res. 2010;2:341–7.

    CAS  Google Scholar 

  8. Park J, Cho W, Cha KH, Ahn J, Han K, Hwang SJ. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process. Int J Pharm. 2013;441:50–5.

    Article  CAS  Google Scholar 

  9. Siepe S, Lueckel B, Kramer A, Ries A, Gurny R. Strategies for the design of hydrophilic matrix tablets with controlled microenvironmental pH. Int J Pharm. 2006;316:14–20.

    Article  CAS  Google Scholar 

  10. Riis T, Bauer-Brandl A, Wagner T, Kranz H. pH-independent drug release of an extremely poorly soluble weakly acidic drug from multiparticulate extended release formulations. Eur J Pharm Biopharm. 2007;65:78–84.

    Article  CAS  Google Scholar 

  11. Marasini N, Tran TH, Poudel BK, Cho HJ, Choi YK, Chi SC, et al. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm. 2013;441:424–32.

    Article  CAS  Google Scholar 

  12. Choi JS. Enhanced stability and solubility of pH-dependent drug telmisartan achieved by solid dispersion. J Drug Deliv Sci Technol. 2017;37:194–203.

    Article  CAS  Google Scholar 

  13. Yamashita S, Fukunishi A, Higashino H, Kataoka M, Wada K. Design of supersaturable formulation of telmisartan with pH modifier: in vitro study on dissolution and precipitation. J Pharm Investig. 2017;47:163–71.

    Article  CAS  Google Scholar 

  14. Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GG, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100:3316–31.

    Article  CAS  Google Scholar 

  15. Mahapatra AK, Murthy PN, Biswal S, Mahapatra AP, Pradhan SP. Dissolution enhancement and physicochemical characterization of valsartan in solid dispersions with β-CD, HP β-CD, and PVP K-30. Dissolut Technol. 2011;18:39–45.

    Article  CAS  Google Scholar 

  16. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.

    Article  CAS  Google Scholar 

  17. Qian F, Huang J, Hussain MA. Drug–polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci. 2010;99:2941–7.

    Article  CAS  Google Scholar 

  18. Xu S, Dai WG. Drug precipitation inhibitors in supersaturable formulations. Int J Pharm. 2013;453:36–43.

    Article  CAS  Google Scholar 

  19. Phuong HLT, Tran TTD, Lee SA, Nho VH, Chi SC, Lee BJ. Roles of MgO release from polyethylene glycol 6000-based solid dispersions on microenvironmental pH, enhanced dissolution and reduced gastrointestinal damage of telmisartan. Arch Pharm Res. 2011;34:747–55.

    Article  CAS  Google Scholar 

  20. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  CAS  Google Scholar 

  21. Shah S, Joshi S, Lin S, Madan PL. Preparation and characterization of spironolactone solid dispersions using hydrophilic carriers. Asian J Pharm Sci. 2012;7:40–9.

    Google Scholar 

  22. Oh DH, Kang JH, Kim DW, Lee BJ, Kim JO, Yong CS, et al. Comparison of solid self-microemulsifying drug delivery system (solid SMEDDS) prepared with hydrophilic and hydrophobic solid carrier. Int J Pharm. 2011;420:412–8.

    Article  CAS  Google Scholar 

  23. Kane R, Kuchekar B. Preparation, physicochemical characterization, dissolution and formulation studies of telmisartan cyclodextrin inclusion complexes. Asian J Pharm. 2010;4:52.

    Article  CAS  Google Scholar 

  24. Sugano K. Introduction to computational oral absorption simulation. Expert Opin Drug Metab Toxicol. 2009;5:259–93.

    Article  CAS  Google Scholar 

  25. Ozaki S, Minamisono T, Yamashita T, Kato T, Kushida I. Supersaturation–nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms. J Pharm Sci. 2012;101:214–22.

    Article  CAS  Google Scholar 

  26. Sangwal K. Additives and crystallization processes: from fundamentals to applications. Chichester: John Wiley & Sons Ltd; 2007.

    Book  Google Scholar 

  27. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98:2549–72.

    Article  CAS  Google Scholar 

  28. Li DX, Han MJ, Balakrishnan P, Yan YD, Oh DH, Joe JH, et al. Enhanced oral bioavailability of flurbiprofen by combined use of micelle solution and inclusion compound. Arch Pharm Res. 2010;33:95–101.

    Article  CAS  Google Scholar 

  29. Warren DB, Benameur H, Porter CJ, Pouton CW. Using polymeric precipitation inhibitors to improve the absorption of poorly water-soluble drugs: a mechanistic basis for utility. J Drug Target. 2010;18:704–31.

    Article  CAS  Google Scholar 

  30. Patel B, Parikh RH, Swarnkar D. Enhancement of dissolution of telmisartan through use of solid dispersion technique-surface solid dispersion. J Pharm Bioallied Sci. 2012;4(Suppl 1):64.

    Article  CAS  Google Scholar 

  31. Cao Y, Shi LL, Cao QR, Yang M, Cui JH. In-vitro characterization and oral bioavailability of organic solvent-free solid dispersions containing telmisartan. Iran J Pharm Res. 2016;15:385.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nagarsenker MS, Meshram RN, Ramprakash G. Solid dispersion of hydroxypropyl β-cyclodextrin and ketorolac: enhancement of in-vitro dissolution rates, improvement in anti-inflammatory activity and reduction in ulcerogenicity in rats. J Pharm Pharmacol. 2000;52:949–56.

    Article  CAS  Google Scholar 

  33. Kumar SGV, Mishra DN. Analgesic, anti-inflammatory, and ulcerogenic studies of meloxicam solid dispersion prepared with polyethylene glycol 6000. Methods Find Exp Clin Pharmacol. 2006;28:419.

    Article  CAS  Google Scholar 

  34. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.

    Article  CAS  Google Scholar 

  35. Dukeck R, Sieger P, Karmwar P. Investigation and correlation of physical stability, dissolution behaviour and interaction parameter of amorphous solid dispersions of telmisartan: a drug development perspective. Eur J Pharm Sci. 2013;49:723–31.

    Article  CAS  Google Scholar 

  36. Karavas E, Ktistis G, Xenakis A, Georgarakis E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur J Pharm Biopharm. 2006;63:103–14.

    Article  CAS  Google Scholar 

  37. Hong JY, Kim JK, Song YK, Park JS, Kim CK. A new self-emulsifying formulation of itraconazole with improved dissolution and oral absorption. J Control Release. 2006;110:332–8.

    Article  CAS  Google Scholar 

  38. Herting MG, Kleinebudde P. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties. Int J Pharm. 2007;338:110–8.

    Article  CAS  Google Scholar 

  39. Kiran T, Shastri N, Ramakrishna S, Sadanandam M. Surface solid dispersion of glimepiride for enhancement of dissolution rate. Int J Pharmtech Res. 2009;1:822–31.

    CAS  Google Scholar 

  40. Patil AB, Ramchandra VK, Dhananjay SS, Trushali SK, Bhaskar BG, Vivek SK, et al. Formulation and evaluation of solid dispersion of telmisartan with KOH as alkaliser by hot melt method. J Pharm Biomed Sci. 2010;1:1–7.

    Google Scholar 

  41. Cirri M, Maestrelli F, Mennini N, Mura P. Influence of the preparation method on the physical–chemical properties of ketoprofen–cyclodextrin–phosphatidylcholine ternary systems. J Pharm Biomed Anal. 2009;50:690–4.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1A2B4011449). This work also supported in part by the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health and Welfare, Republic of Korea (HI17C0710), and the Advanced Technology Center program (10051950) funded by the Ministry of Trade, Industry and Energy (MI, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Wook Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, J.S., Chae, B.R., Shin, D.J. et al. Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan. AAPS PharmSciTech 19, 2990–2999 (2018). https://doi.org/10.1208/s12249-018-1124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1124-y

KEY WORDS

Navigation