Skip to main content

Advertisement

Log in

Preparation and Characterization of Tetrahydrocurcumin-Loaded Cellulose Acetate Phthalate/Polyethylene Glycol Electrospun Nanofibers

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

A simple composite electrospun nanofiber of cellulose acetate phthalate (CAP)-polyethylene glycol (PEG) loaded with tetrahydrocurcumin (THC) was developed in this study, and the in vitro diffusion of THC was evaluated. The nanofibers were characterized by scanning electron microscopy, powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC). The formulated nanofiber (NF) with THC has smooth morphology with diameter of around 300–500 nm. The complete entrapment and dispersion of THC was observed from the results of PXRD and DSC due to the loss of THC crystalline property. Further, FT-IR demonstrated that the vibration bands for the polymers used were dominant over the THC, and the vibrational bands of THC were not observed from the final formulation. The drug entrapment by the final CAP + PEG NF was found to be 95.5% with the high swelling index. From the in vitro release study, it was found that the formulated THC-loaded CAP + PEG NF has followed anomalous mechanism, demonstrating both diffusion and swelling controlled modes. The drug release extended up to 12 h with a final cumulative release of 94.24%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rashmi HP, Vandana BP, Medha DJ. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001–18. https://doi.org/10.2147/ijn.S56932.

    Article  Google Scholar 

  2. Saravanakumar A, Ganesh M, Jun HJ, Je OC, Yun HC, Jung HL, et al. Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artif Cells Nanomed Biotechnol. 2014;44:847–52. https://doi.org/10.3109/21691401.2014.986676.

    Article  CAS  Google Scholar 

  3. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12–21. https://doi.org/10.1016/j.jconrel.2014.04.018.

    Article  CAS  PubMed  Google Scholar 

  4. Wang B, Wang Y, Yin T, Yu Q. Applications of electrospinning technique in drug delivery. Chem Eng Commun. 2010;197:1315–38. https://doi.org/10.1080/00986441003625997.

    Article  CAS  Google Scholar 

  5. Chakraborty S, Liao IC, Adler A, Leong KW. Electrohydrodynamics: a facile technique to fabricate drug delivery systems. Adv Drug Deliv Rev. 2009;61:1043–54. https://doi.org/10.1016/j.addr.2009.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mendoza PC, Ferrand A, Facca S, Fioretti F, Ladam G, Kuchler BS, et al. Smart hybrid materials equipped by nanoreservoirs of therapeutics. ACS Nano. 2012;6:483–90. https://doi.org/10.1021/nn203817t.

    Article  CAS  Google Scholar 

  7. Ignatious F, Sun L, Lee CP, Baldoni J. Electrospun nanofibers in oral drug delivery. J Pharm Res. 2010;27:576–88. https://doi.org/10.1007/s11095-010-0061-6.

    Article  CAS  Google Scholar 

  8. Yan S, Xiaoqiang L, Shuiping L, Xiumei M, Ramakrishna S. Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids Surf B Biointerfaces. 2009;73:376–81. https://doi.org/10.1016/j.colsurfb.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  9. Shen X, Yu D, Zhu L, Branford WC, White K, Chatterton NP. Electrospun diclofenac sodium loaded Eudragit® L 100-55 nanofibers for colon-targeted drug delivery. Int J Pharm. 2011;408:200–7. https://doi.org/10.1016/j.ijpharm.2011.01.058.

    Article  CAS  PubMed  Google Scholar 

  10. Yoo JJ, Kim C, Chung CW, Jeong YI, Kang D. 5-aminolevulinic acid-incorporated poly(vinyl alcohol) nanofiber-coated metal stent for application in photodynamic therapy. Int J Nanomedicine. 2012;7:1997–2005. https://doi.org/10.2147/ijn.S30298.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fathi AA, Qun L, Chan YW, Chan SY. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech. 2010;11:1164–70. https://doi.org/10.1208/s12249-010-9475-z.

    Article  CAS  Google Scholar 

  12. Opanasopit P, Ruktanonchai U, Suwantong O, Panomsuk S, Ngawhirunpat T, Sittisombut C, et al. Electrospun poly(vinyl alcohol) fiber mats as carriers for extracts from the fruit hull of mangosteen. J Cosmet Sci. 2008;59:233–42.

    CAS  PubMed  Google Scholar 

  13. Chen DW, Liao JY, Liu SJ, Chan EC. Novel biodegradable sandwich structured nanofibrous drug-eluting membranes for repair of infected wounds: an in vitro and in vivo study. Int J Nanomedicine. 2012;7:763–71. https://doi.org/10.2147/IJN.S29119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu XM, Branford-White CJ, Zhu LM, Chatterton NP, Yu DG. Ester prodrug-loaded electrospun cellulose acetate fiber mats as transdermal drug delivery systems. J Mater Sci Mater Med. 2010;21:2403–11. https://doi.org/10.1007/s10856-010-4100-y.

    Article  CAS  PubMed  Google Scholar 

  15. Janairo RR, Henry JJ, Lee BL, Hashi CK, Derugin N, Lee R, et al. Heparin-modified small-diameter nanofibrous vascular grafts. IEEE Trans Nanobioscience. 2012;11:22–7. https://doi.org/10.1109/tnb.2012.2188926.

    Article  PubMed  Google Scholar 

  16. Prabaharan M, Jayakumar R, Nair SV. Electrospun nanofibrous scaffolds-current status and prospects in drug delivery. In: Jayakumar R, Nair S, editors. Biomedical applications of polymeric nanofibers, Advances in polymer science. Berlin: Springer; 2011. p. 241–62.

    Chapter  Google Scholar 

  17. Zhang Y, Lim CT, Ramakrishna S, Huang ZM. Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci Mater Med. 2005;16:933–46. https://doi.org/10.1007/s10856-005-4428-x.

    Article  CAS  PubMed  Google Scholar 

  18. Sukhwinder KB, Harpal SB. Perspectives on nanofiber dressings for the localized delivery of botanical remedies in wound healing. AIMS Mater Sci. 2017;4:370–82. https://doi.org/10.3934/matersci.2017.2.370.

    Article  Google Scholar 

  19. Abdelgawada AM, Hudsona SM, Rojasb OJ. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr Polym. 2014;100:166–78. https://doi.org/10.1016/j.carbpol.2012.12.043.

    Article  CAS  Google Scholar 

  20. Kalaipriya M, Sridhar R, Sundarrajan S, Venugopal JR, Ramakrishna S. Vitamin B12 loaded poly caprolactone nanofibers: a novel transdermal route for the water soluble energy supplement delivery. Int J Pharm. 2013;444:70–6.

    Article  CAS  Google Scholar 

  21. Olaru N, Olaru L, Tudorachi N, Simona D, Manuela P. Nanostructures of cellulose acetate phthalate obtained by electrospinning from 2-methoxyethanol-containingsolvent systems: morphological aspects thermal behavior, and antimicrobial activity. Ind Eng Chem Res. 2013;52:696–705. https://doi.org/10.1021/ie301299d.

    Article  CAS  Google Scholar 

  22. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT. Fabrication of porous electrospun nanofibers. Nanotechnology. 2006;17:901–8. https://doi.org/10.1088/0957-4484/17/3/047.

    Article  CAS  Google Scholar 

  23. Sugiyama Y, Kawakishi S, Osawa T. Involvement of the β-diketone moiety in the antioidative mechanism of tetrahydrocurcumin. Biochem Pharmacol. 1996;52:519–25. https://doi.org/10.1016/0006-2952(96)00302-4.

    Article  CAS  PubMed  Google Scholar 

  24. Mahendra Kumar T, Mayank G, Sambhu CM, Snehasis J. Protective effects of tetrahydrocurcumin (THC) on fibroblast and melanoma cell lines in vitro: it’s implication for wound healing. J Food Sci Technol. 2017;54:1137–45. https://doi.org/10.1007/s13197-017-2525-8.

    Article  CAS  Google Scholar 

  25. Saipin S, Wichan K, Duangkhae M, Ruedeekorn W. Controlled release of oral tetrahydrocurcumin from a novel self-emulsifying floating drug delivery system (SEFDDS). AAPS PharmSciTech. 2011;12:152–64. https://doi.org/10.1208/s12249-010-9568-8.

    Article  CAS  Google Scholar 

  26. Wu JC, Tsai ML, Lai CS, Wang YJ, Ho CT, Pan MH. Chemopreventative effects of tetrahydrocurcumin on human diseases. Food Funct. 2014;5:12–27. https://doi.org/10.1039/c3fo60370a.

    Article  CAS  PubMed  Google Scholar 

  27. Shrestha R, Palat A, Punnoose AM, Joshi S, Ponraju D, Paul SFD. Electrospun cellulose acetate phthalate nanofibrous scaffolds fabricated using novel solvent combinations biocompatible for primary chondrocytes and neurons. Tissue Cell. 2016;18:634–43. https://doi.org/10.1016/j.tice.2016.07.007.

    Article  CAS  Google Scholar 

  28. Xiaochen GU, Sreeneeranj K, Daryl JF, Frank JB. In-vitro permeation of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone. J Pharm Pharmacol. 2004;56:621–8. https://doi.org/10.1211/0022357023402.

    Article  CAS  Google Scholar 

  29. Prashant MS, Suniket VF, Avinash KD. Evaluation of polymerized rosin for the formulation and development of transdermal drug delivery system: a technical note. AAPS PharmSciTech. 2005;6:E649–54. https://doi.org/10.1208/pt060481.

    Article  Google Scholar 

  30. Venkata RY, Satya LJ, Natarajan J, Senthil V, Gowthamarajan K, Sumeet S, et al. A novel vesicular transdermal delivery of nifedipine—preparation, characterization and in vitro/in-vivo evaluation. Drug Delivery. 2016;23:619–30. https://doi.org/10.3109/10717544.2014.931484.

    Article  Google Scholar 

  31. Shiow-Fern Ng JJR, Francis DS, Victor M, Gillian ME. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11:1432–41. https://doi.org/10.1208/s12249-010-9522-9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rolland A, Demichelis G, Jamoulle JC, Shroot B. Influence of formulation, receptor fluid, and occlusion, on in vitro drug release from topical dosage forms, using an automated flow-through diffusion cell. Pharm Res. 1992;9:82–6. https://doi.org/10.1023/A:1018935912097.

    Article  CAS  PubMed  Google Scholar 

  33. Olaru N, Olaru L. Electrospinning of cellulose acetate phthalate from different solvent systems. Ind Eng Chem Res. 2010;49:1953–7. https://doi.org/10.1021/ie901427f.

    Article  CAS  Google Scholar 

  34. Ravikumar R, Ganesh M, Ubaidulla U, Choi EY, Jang HT. Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer. Saudi Pharm J. 2017;25:921–6. https://doi.org/10.1016/j.jsps.2017.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nezarati RM, Eifert MB, Cosgriff-Hernandez E. Effects of humidity and solution viscosity on electrospun Fiber morphology. Tissue Eng Part C Methods. 2013;19:810–9. https://doi.org/10.1089/ten.tec.2012.0671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manjunath L, Sailaja RRN. PMMA—cellulose acetate phthalate nano composites reinforced with silane-treated nanoclay. Cellulose. 2014;21:1793–802. https://doi.org/10.1007/s10570-014-0190-x.

    Article  CAS  Google Scholar 

  37. Roxin P, Karlsson A, Singh SK. Characterization of cellulose acetate phthalate (CAP). Drug Dev Ind Pharm. 1998;24:1025–41. https://doi.org/10.3109/03639049809089946.

    Article  CAS  PubMed  Google Scholar 

  38. Rana IR, Ming MW, Amal HEK. Ketoprofen-loaded Eudragit electrospun nanofibers for the treatment of oral mucositis. Int J Nanomedicine. 2017;12:2335–51. https://doi.org/10.2147/IJN.S131253.

    Article  Google Scholar 

  39. Zhaoyang X, Jianyu L, Huan Z, Xiangdong J, Chuang Y, Fei W, et al. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA) hydrogels: poly(ethylene glycol) (PEG) as porogen. RSC Adv. 2016;6:43626–33. https://doi.org/10.1039/c6ra03620a.

    Article  CAS  Google Scholar 

  40. Hayashi M, Nagai T, Nogami H. Factors affecting dissolution rate of cellulose acetate phthalate in aqueous solution. Chem Pharm Bull. 1970;18:2350–3.

    Article  CAS  Google Scholar 

  41. Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  CAS  Google Scholar 

  42. Ritger PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hanseo University Intramural Research Grant, South Korea (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang Hyun Tae.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOC 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rramaswamy, R., Mani, G., Venkatachalam, S. et al. Preparation and Characterization of Tetrahydrocurcumin-Loaded Cellulose Acetate Phthalate/Polyethylene Glycol Electrospun Nanofibers. AAPS PharmSciTech 19, 3000–3008 (2018). https://doi.org/10.1208/s12249-018-1122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1122-0

KEY WORDS

Navigation