Skip to main content
Log in

Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Chimeric/mixed stimuli-responsive nanocarriers are promising agents for therapeutic and diagnostic applications, as well as in the combinatorial field of theranostics. Herein, we designed chimeric nanosystems, composed of natural phospholipid and pH-sensitive amphiphilic diblock copolymer, in different molar ratios and assessed the polymer lyotropic effect on their properties. Initially, polymer-grafted bilayers were evaluated for their thermotropic behavior by thermal analysis. Chimeric liposomes were prepared through thin-film hydration and the obtained vesicles were studied by light scattering techniques, to measure their physicochemical characteristics and colloidal stability, as well as by imaging techniques, to elucidate their global and membrane morphology. Finally, in vitro screening of the systems’ toxicity was held. The copolymer effect on the membrane phase transition strongly depended on the pH of the surrounding environment. Chimeric nanoparticles were around and above 100 nm, while electron microscopy revealed occasional morphology diversity, probably affecting the toxicity of the systems. The latter was assessed to be tolerable, while dependent on the nanosystems’ material concentration, polymer concentration, and polymer composition. All experiments suggested that the thermodynamic and biophysical properties of the nanosystems are copolymer-composition- and concentration-dependent, since different amounts of incorporated polymer would produce divergent effects on the lyotropic liquid crystal membrane. Certain chimeric systems can be exploited as advanced drug delivery nanosystems, based on their overall promising profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Demetzos C, Pippa N. Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 2014;21(4):250–7.

    Article  CAS  PubMed  Google Scholar 

  2. Wang K, Huang Q, Qiu F, Sui M. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr Med Chem. 2015;22(35):4118–36.

    Article  CAS  PubMed  Google Scholar 

  3. Pippa N, Stellas D, Skandalis A, Pispas S, Demetzos C, Libera M, et al. Chimeric lipid/block copolymer nanovesicles: physico-chemical and bio-compatibility evaluation. Eur J Pharm Biopharm. 2016;107:295–309.

    Article  CAS  PubMed  Google Scholar 

  4. Pippa N, Gardikis K, Pispas S, Demetzos C. The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Therm Anal Calorim. 2014;116(1):99–105.

    Article  CAS  Google Scholar 

  5. Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol. 2016;173(6):970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu H, Paxton JW, Wu Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharm Res. 2015;32(7):2428–38.

    Article  CAS  PubMed  Google Scholar 

  7. Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64(11):979–92.

    Article  CAS  PubMed  Google Scholar 

  8. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–67.

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Fan Z, Xu Y, Lo W, Wang X, Niu H, et al. pH and thermal sensitive hydrogels as stem cell carriers for cardiac therapy. ACS Appl Mater Interfaces. 2016;8(17):10752–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules. 2017;18(9):2820–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fan Z, Xu Z, Niu H, Gao N, Guan Y, Li C, et al. An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Sci Rep. 2018;8(1):1371.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Naziris N, Pippa N, Pispas S, Demetzos C. Stimuli-responsive drug delivery nanosystems: from bench to clinic. Curr Nanomed. 2016;6(3):1–20.

    Article  CAS  Google Scholar 

  13. Delogu F. Thermodynamics on the nanoscale. J Phys Chem B. 2005;109:21938–41.

    Article  CAS  PubMed  Google Scholar 

  14. Dao TPT, Fernandes F, Er-Rafik M, Salva R, Schmutz M, Brûlet A, et al. Phase separation and nanodomain formation in hybrid polymer/lipid vesicles. ACS Macro Lett. 2015;4:182–6.

    Article  CAS  Google Scholar 

  15. Samsonov VM, Sdobnyakov NY, Bazulev AN. On thermodynamic stability conditions for nanosized particles. Surf Sci. 2003;532–535:526–30.

    Article  CAS  Google Scholar 

  16. Pippa N, Pispas S, Demetzos C. The metastable phases as modulators of biophysical behavior of liposomal membranes. J Therm Anal Calorim. 2015;120(1):937–45.

    Article  CAS  Google Scholar 

  17. Demetzos C. Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech. 2015;16(3):491–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tribet C, Vial F. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter. 2008;4:68–81.

    Article  CAS  Google Scholar 

  19. Samsonova O, Pfeiffer C, Hellmund M, Merkel OM, Kissel T. Low molecular weight pDMAEMA-block-pHEMA block-copolymers synthesized via RAFT-polymerization: potential non-viral gene delivery agents? Polymer. 2011;3(2):693–718.

    Article  CAS  Google Scholar 

  20. Zengin A, Karakose G, Caykara T. Poly(2-(dimethylamino)ethyl methacrylate) brushes fabricated by surface-mediated RAFT polymerization and their response to pH. Eur Polym J. 2013;49(10):3350–8.

    Article  CAS  Google Scholar 

  21. Wei X, Cohen R, Barenholz Y. Insights into composition/structure/function relationships of Doxil® gained from “high-sensitivity” differential scanning calorimetry. Eur J Pharm Biopharm. 2016;104:260–70.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng Z, Elias DR, Kamat NP, Johnston ED, Poloukhtine A, Popik V, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjug Chem. 2011;22(10):2021–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chrysostomou V, Pispas S. Stimuli-responsive amphiphilic PDMAEMA-b-PLMA copolymers and their cationic and zwitterionic analogs. J Polym Sci A Polym Chem. 2018;56(6):598–610.

    Article  CAS  Google Scholar 

  24. Pippa N, Deli E, Mentzali E, Pispas S, Demetzos C. PEO-b-PCL grafted DPPC liposomes: physicochemical characterization and stability studies of novel bio-inspired advanced drug delivery nano systems (aDDnSs). J Nanosci Nanotechnol. 2014;14:5676–81.

    Article  CAS  PubMed  Google Scholar 

  25. Galani A, Tsitsias V, Stellas D, Psycharis V, Raptopoulou CP, Karaliota A. Two novel compounds of vanadium and molybdenum with carnitine exhibiting potential pharmacological use. J Inorg Biochem. 2014;142(C):109–17.

    PubMed  Google Scholar 

  26. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;1376:91–145.

    Article  CAS  PubMed  Google Scholar 

  27. Kitayama H, Takechi Y, Tamai N, Matsuki H, Yomota C, Saito H. Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine-cholesterol binary liposome membrane. Chem Pharm Bull (Tokyo). 2014;62(1):58–63.

    Article  CAS  Google Scholar 

  28. Matsingou C, Hatziantoniou S, Georgopoulos A, Dimas K, Terzis A, Demetzos C. Labdane-type diterpenes: thermal effects on phospholipid bilayers, incorporation into liposomes and biological activity. Chem Phys Lipids. 2005;138(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  29. Matsingou C, Demetzos C. Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: the role of chemical structure. Chem Phys Lipids. 2007;145(1):45–62.

    Article  CAS  PubMed  Google Scholar 

  30. Naziris N, Pippa N, Chrysostomou V, Pispas S, Demetzos C, Libera M, et al. Morphological diversity of block copolymer/lipid chimeric nanostructures. J Nanopart Res. 2017;19(10):347–57.

    Article  CAS  Google Scholar 

  31. Takechi-Haraya Y, Sakai-Kato K, Goda Y. Membrane rigidity determined by atomic force microscopy is a parameter of the permeability of liposomal membranes to the hydrophilic compound calcein. AAPS PharmSciTech. 2017;18(5):1887–93.

    Article  CAS  PubMed  Google Scholar 

  32. Naziris N, Pippa N, Meristoudi A, Pispas S, Demetzos C. Design and development of pH-responsive HSPC:C12H25-PAA chimeric liposomes. J Liposome Res. 2017;27(2):108–17.

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Jiang G, Wang Y, Xu Y. Synthesis and drug release properties of novel pH- and temperature-sensitive copolymers based on a hyperbranched polyether core. Colloid Polym Sci. 2011;289:677–84.

    Article  CAS  Google Scholar 

  34. Attwood D, Florence AT. Physical pharmacy. London: Pharmaceutical Press; 2008.

    Google Scholar 

  35. Winzen S, Bernhardt M, Schaeffel D, Koch A, Kappl M, Koynov K, et al. Submicron hybrid vesicles consisting of polymer-lipid and polymer-cholesterol blends. Soft Matter. 2013;9(25):5883–90.

    Article  CAS  Google Scholar 

  36. Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm. 2011;417(1–2):120–37.

    Article  CAS  PubMed  Google Scholar 

  37. Schulz M, Binder WH. Mixed hybrid lipid/polymer vesicles as a novel membrane platform. Macromol Rapid Commun. 2015;36(23):2031–41.

    Article  CAS  PubMed  Google Scholar 

  38. Kaiser N, Kimpfler A, Massing U, Burger AM, Fiebig HH, Brandl M, et al. 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. Int J Pharm. 2003;256(1–2):123–31.

    Article  CAS  PubMed  Google Scholar 

  39. Ickenstein LM, Sandström MC, Mayer LD, Edwards K. Effects of phospholipid hydrolysis on the aggregate structure in DPPC/DSPE-PEG2000 liposome preparations after gel to liquid crystalline phase transition. Biochim Biophys Acta. 2006;1758(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  40. Bowick MJ, Sknepnek R. Pathways to faceting of vesicles. Soft Matter. 2013;9(34):8088–95.

    Article  CAS  Google Scholar 

  41. Itel F, Chami M, Najer A, Lörcher S, Wu D, Dinu IA, et al. Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules. 2014;47(21):7588–96.

    Article  CAS  Google Scholar 

  42. Andersson M, Hammarstroem L, Edwards K. Effect of bilayer phase transitions on vesicle structure, and its influence on the kinetics of viologen reduction. J Phys Chem. 1995;99(39):14531–8.

    Article  CAS  Google Scholar 

  43. Johnsson M, Edwards K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J. 2003;85(6):3839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dao TPT, Brûlet A, Fernandes F, Er-Rafik M, Ferji K, Schweins R, et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid wormlike micelles to vesicles presenting lipid nanodomains. Langmuir. 2017;33(7):1705–15.

    Article  CAS  PubMed  Google Scholar 

  45. Campbell PI. Toxicity of some charged lipids used in liposome preparations. Cytobios. 1983;37(145):21–6.

    CAS  PubMed  Google Scholar 

  46. Szoka FC Jr, Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother. 1987;31(3):421–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roursgaard M, Knudsen KB, Northeved H, Persson M, Christensen T, Kumar PEK, et al. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol in Vitro. 2016;36:164–71.

    Article  CAS  PubMed  Google Scholar 

  48. Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2011;7:49–60.

    PubMed  PubMed Central  Google Scholar 

  49. Simões MG, Alves P, Carvalheiro M, Simões PN. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery. Colloids Surf B: Biointerfaces. 2017;152:103–13.

    Article  CAS  PubMed  Google Scholar 

  50. Oh WK, Kim S, Yoon H, Jang J. Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Small. 2010;6(7):872–9.

    Article  CAS  PubMed  Google Scholar 

  51. Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules. 2015;16(2):515–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research has been financially supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costas Demetzos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

The stability evaluation of polydispersity, as well as diameters and wall dimensions extracted by cryo-TEM for the prepared chimeric nanosystems are provided in the supplementary material section. (DOCX 201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naziris, N., Pippa, N., Stellas, D. et al. Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures. AAPS PharmSciTech 19, 2971–2989 (2018). https://doi.org/10.1208/s12249-018-1112-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1112-2

KEY WORDS

Navigation