Skip to main content
Log in

Glibenclamide Mini-tablets with an Enhanced Pharmacokinetic and Pharmacodynamic Performance

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

In an attempt to decrease the dose, anticipated side effects, and the cost of production of glibenclamide, GLC, a potent oral hypoglycemic drug, the enhancement of the dissolution and hence the oral bioavailability were investigated. Adsorption and co-adsorption techniques using carriers having a very large surface area and surface active agents were utilized to enhance the drug dissolution. Moreover, the Langmuir adsorption isotherms were constructed to identify the type and mechanism of adsorption. The optimized formulation showing the highest in vitro release was compressed into mini-tablet to facilitate drug administration to elderly patients and those having swallowing difficulties. The produced mini-tablets were tested for their mechanical strength and in vitro release pattern. In addition, the pharmacodynamic and pharmacokinetic studies in New Zealand rabbits were performed using the optimized mini-tablet formulation. Mini-tablets containing GLC co-adsorbate with Pluronic F-68 and Laponite RD showed 100 ± 1.88% of GLC released after 20 min. Pharmacodynamic studies in rabbits revealed significantly higher (p ≤ 0.05) hypoglycemic effect with the optimized mini-tablets at a lower GLC dose compared to mini-tablets containing the commercial GLC dose. Moreover, pharmacokinetic analysis showed significantly higher (p ≤ 0.05) AUC, Cmax, and shorter Tmax. The optimized mini-tablet formulation showed 1.5-fold enhancement of the oral bioavailability compared to mini-tablets containing untreated GLC. It could be concluded that the co-adsorption technique successfully enhanced the oral bioavailability of GLC. Furthermore, the produced mini-tablets have a higher oral bioavailability with a lower GLC dose, which could offer economic benefit for industry as well as acceptability for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AUC(0–24 h) :

area under drug plasma concentration versus time curve from zero time to the end of the experiment

AUC(0–∞) :

area under drug plasma concentration versus time curve from zero time to infinity

AUMC(0–24 h) :

area under first moment curve from zero time to the end of the experiment

AUMC(0–∞) :

area under first moment curve from zero time to infinity

BCS:

biopharmaceutical classification system

C max :

maximum (peak) drug concentration in plasma

ClT :

total drug clearance

DSC:

differential scanning calorimetry

F R :

relative bioavailability

GLC:

glibenclamide

IS:

internal standard

K abs :

absorption rate constant

K el :

elimination rate constant

LOD:

limit of detection

LOQ:

limit of quantitation

MRT:

mean residence time

NUS:

Neusilin

PEG:

polyethylene glycol

RSD:

relative standard deviation

STZ:

streptozotocin

t ½ (abs) :

absorption half-life

t ½ (el.) :

elimination half-life

T max :

time to achieve peak drug concentration in plasma

References

  1. Glyburide dosage guide with precautions. http://www.drugs.com. Accessed 1 Dec 2017.

  2. Shazly GA, Mahrous GM. Assessment of the physicochemical properties and in vitro dissolution of glibenclamide tablets marketed in Saudi Arabia. Dissolut Technol. 2014;21:61–6.

    Article  Google Scholar 

  3. Obaidat AA, Ababneh NM. Improvement of glibenclamide bioavailability using cyclodextrin inclusion complex dispersed in polyethylene glycol. Jordan J Pharm Sci. 2009;2:119–30.

    Google Scholar 

  4. Roden DF, Altman KW. Causes of dysphagia among different age groups: a systematic review of the literature. Otolaryngol Clin North Am. 2013;46:965–87.

    Article  PubMed  Google Scholar 

  5. Aleksovski A, Dreu R, Gasperlin M, Planinsek O. Mini-tablets: a contemporary system for oral drug delivery in targeted patient groups. Expert Opin Drug Deliv. 2014;12:1–20.

    Google Scholar 

  6. Kawakami K, Oda N, Miyoshi K, Funaki T, Ida Y. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur J Pharm Sci. 2006;28:7–14.

    Article  CAS  PubMed  Google Scholar 

  7. Ruan LP, Yu BY, Fu GM, Zhu DN. Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J Pharm Biomed Anal. 2005;38:457–64.

    Article  CAS  PubMed  Google Scholar 

  8. Aboutaleb AE, Abdel-Rahman SI, Ahmed MO, Younis MA. Improvement of domperidone solubility and dissolution rate by dispersion in various hydrophilic carriers. J App Pharm Sci. 2016;6:133–9.

    Article  CAS  Google Scholar 

  9. Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MAS. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Design Dev Ther. 2016;10:117–28.

    Article  CAS  Google Scholar 

  10. Hu L. Prodrugs: effective solutions for solubility, permeability and targeting challenges. IDrugs. 2004;7:736–42.

    PubMed  Google Scholar 

  11. Shazly GA, Alshehri S, Ibrahim MA, Tawfeek HM, Razik JA, Hassan YA, et al. Development of domepridone solid lipid nanoparticles: in vitro and in vivo characterization. AAPS PharmSciTec. 2018;19:1712–9. https://doi.org/10.1208/s12249-018-0987-2.

    Article  CAS  Google Scholar 

  12. Tatavarti AS, Hoag SW. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J Pharm Sci. 2006;95:1459–68.

    Article  CAS  PubMed  Google Scholar 

  13. Aboutaleb AE, Abdel-Rahman SI, Ahmed MO, Younis MA. Enhancement of domperidone dissolution rate via formulation of adsorbates and co-adsorbates. Int J Pharm Sci Res. 2016;7:951–60.

    CAS  Google Scholar 

  14. Abou-Taleb AE, Abdel-Rhman AA, Samy EM, Tawfeek HM. Formulation and evaluation of rofecoxib tablets in comparison with marketed product. Saudi Pharm J. 2006;14:187–95.

    CAS  Google Scholar 

  15. Abou-Taleb AE, Abdel-Rhman AA, Samy EM, Tawfeek HM. Formulation and evaluation of rofecoxib capsules. Saudi Pharm J. 2009;17:40–50.

    CAS  Google Scholar 

  16. Caputo G. Supercritical fluid adsorption of domperidone on silica aerogel. Adv Chem Eng Sci. 2013;3:189–94.

    Article  CAS  Google Scholar 

  17. Hadi MA, Rao NGR, Rao AS. Formulation and evaluation of pH-responsive mini-tablets for ileo-colonic targeted drug delivery. Trop J Pharm Res. 2014;13:1021–9.

    Article  CAS  Google Scholar 

  18. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi Siahboomi AR. The influence of HPMC concentration on release of theophylline or hydrocortisone from extended release minitablets. Drug Dev Ind Pharm. 2013;39:1167–74.

    Article  CAS  PubMed  Google Scholar 

  19. Tawfeek HM, Saleem IY, Roberts M. Dissolution enhancement and formulation of rapid-release lornoxicam mini-tablets. J Pharm Sci. 2014;103:2470–83.

    Article  CAS  PubMed  Google Scholar 

  20. Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, et al. Innovative preparation of curcumin for improved oral bioaviability. Biol Pharm Bull. 2011;34:660–5.

    Article  CAS  PubMed  Google Scholar 

  21. Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008;9:431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian F, Tao J, Desikan S, Hussain M, Smith RL. Mechanistic investigation of Pluronic R based nanocrystalline drug–polymer solid dispersions. Pharm Res. 2007;24:1551–60.

    Article  CAS  PubMed  Google Scholar 

  23. Moore JW, Flanner HH. Mathematical comparison of curves with an emphasis on dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  24. Mendyk A, Pacławski A, Szlęk J, Jachowicz R. PhEq_bootstrap: an open source software for simulation of f2 distribution in cases of a large variability in the dissolution profiles. Dissolut Technol. 2013;20:13–7.

    Article  Google Scholar 

  25. Mohamed FAA, Roberts M, Seton L, Ford JL, Levina M, Rajabi-Siahboomi AR. Production of extended release mini-tablets using directly compressible grades of HPMC. Drug Dev Ind Pharm. 2013;39:1690–7.

    Article  CAS  PubMed  Google Scholar 

  26. Fell J, Newton JM. The tensile strength of lactose tablets. J Pharm Pharmacol. 1968;20:657–9.

    Article  CAS  PubMed  Google Scholar 

  27. The USP Pharmacopeia 35 and the National Formularity 30. Rockville, MD 20852-1790 USA. 2012, P 420.

  28. Abdel Rahman AA, Khidr SH, Samy EM, Sayed MA. Enhancement of the dissolution rate of glipizide capsules using fenugreek as natural additive. Unique J Pharm Biol Sci. 2014;2:1–8.

    Google Scholar 

  29. Alam SA, Khan AH, Sirhindi GA, Khan S. Alloxan induced diabetes in rabbits. Pak J Pharmacol. 2005;22:41–5.

    Google Scholar 

  30. Rajasekaran UB, Nayak US. How to choose drug dosage for human experiments based on drug dose used on animal experiments: a review. IJSS Case Rep Rev. 2014;1:31–2.

    Google Scholar 

  31. Food and Drug Administration (FDA). Guidance for industry: bioanalytical method validation. USA: US Department of health and human services; 2013.

  32. Daksh S, Goyal A, Pandiya CK. Validation of analytical methods—strategies & significance. Int J Res Dev Pharm Life Sci. 2015;4:1489–97.

    CAS  Google Scholar 

  33. Aboutaleb AE, Abdel-Rahman SI, Ahmed MO, Younis MA. Design and evaluation of domperidone sublingual tablets. Int J Pharm Pharm Sci. 2016;8:195–201.

    Article  CAS  Google Scholar 

  34. Aboutaleb AE, Abdel-Rahman SI, Ahmed MO, Younis MA. Formulation of domperidone in gastro-retentive floating tablets. J Innovations Pharm Biol Sci. 2016;3:81–93.

    CAS  Google Scholar 

  35. Rockwood Ltd. Laponite: the performance enhancer. http://www.prochem.ch/html/forum/forumbeilagen0107/Laponite_RW_broch_e.pdf. Accessed 31 Mar 2016.

  36. Chen X. Modeling of experimental adsorption isotherm data. Information. 2015;6:14–22.

    Article  Google Scholar 

  37. Lou H, Liu M, Wang L, Mishra SR, Qu W, Johnson J, et al. Development of a mini-tablet of co-grinded prednisone–Neusilin complex for pediatric use. AAPS PharmSciTech. 2013;14:950–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Evonik Resource Efficiency GmbH. Product information AEROSIL® 200. https://www.aerosil.com/www2/uploads/productfinder/AEROSIL-200-EN.pdf. Accessed 22 Feb 2016.

  39. Sharma S, Sher P, Badve S, Pawar AP. Adsorption of meloxicam on porous calcium silicate: characterization and tablet formulation. AAPS PharmSciTech. 2005;6:E618–25.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Makhlof A. Formulation and evaluation of solid pharmaceutical dosage forms containing glipizide. M.Sc. thesis, Faculty of Pharmacy, Assiut University, Assiut, Egypt; 2004.

  41. McCarthy CA, Ahren RJ, Dontireddy R, Ryan KB, Crean AM. Mesoporous silica formulation strategies for drug dissolution enhancement: a review. Expert Opin Drug Deliv. 2016;13:93–108.

    Article  CAS  PubMed  Google Scholar 

  42. Ahuja G, Pathak K. Porous carriers for controlled/modulated drug delivery. Indian J Pharm Sci. 2009;71:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahato RI, Narang AS. Interfacial phenomena. In: Pharmaceutical dosage forms and drug delivery. 2nd ed. New York: CRC Press; 2012. p. 160.

    Google Scholar 

  44. Vadher AH, Parikh JR, Parikh RH, Solanki AB. Preparation and characterization of co-grinded mixture of aceclofenac and NEU US2 for dissolution enhancement of aceclofenac. AAPS PharmSciTech. 2009;10:606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ismail A, Saleh KI, Ibrahim MA, Khalaf S. Effect of porous silica as a drug carrier on the release rate of naproxen from emulgel. Bull Pharm Sci Assiut Univ. 2006;29:224–35.

    CAS  Google Scholar 

  46. Samy AM, Kassem AA, Samy EM, Abu-elyazid SK, Hassan YA. Development and characterization of celecoxib floating capsules. J Life Med. 2014;2:95–110.

    CAS  Google Scholar 

  47. Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009;6:197–208.

    Article  CAS  PubMed  Google Scholar 

  48. Hauschild K, Picker KM. Evaluation of a new co-processed compound based on lactose and maize starch for tablet formulation. AAPS Pharm Sci. 2004;6:27–38.

    Article  Google Scholar 

  49. Cherkaoui I, Monticone V, Vaution C, Treiner C. Coadsorption of the sodium salts of two steroid molecules at a silica/interface as induced by the adsorption of a cationic surfactant. Int J Pharm. 2000;201:71–7.

    Article  CAS  PubMed  Google Scholar 

  50. Girolamo GD, Opezzo JAW, Lopez MI, Schere D, Keller G, Gonzalez CD, et al. Relative bioavailability of new formulation of paracetamol effervescent powder containing sodium bicarbonate versus paracetamol tablets: a comparative pharmacokinetic study in fed subjects. Expert Opin Pharmacother. 2007;8:2449–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Faculty of Pharmacy, Assiut University, Egypt, for supporting and facilitating the research. The authors are also grateful to T3A Company for Pharmaceutical Industries, Assiut, Egypt, for gifting GLC and glipizide. The authors are grateful thankful to Dr. Hamzah Maswedeh, Department of Pharmaceutics, Faculty of Pharmacy, Qassim University, KSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham M. Tawfeek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfeek, H.M., Roberts, M., El Hamd, M.A. et al. Glibenclamide Mini-tablets with an Enhanced Pharmacokinetic and Pharmacodynamic Performance. AAPS PharmSciTech 19, 2948–2960 (2018). https://doi.org/10.1208/s12249-018-1108-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1108-y

KEY WORDS

Navigation