Skip to main content

Advertisement

Log in

Characterization and In Vitro Permeation Study of Cubic Liquid Crystal Containing Sinomenine Hydrochloride

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This study developed a new transdermal delivery system for the improved delivery of sinomenine hydrochloride (SH). The delivery system utilized the advantages of lyotropic liquid crystals (LLC) creating an adaptable system that offers a variety of options for the field of transdermal delivery. The formulation was prepared, characterized, and evaluated for its skin penetration in vitro. In the study, the appearance of samples was characterized by visual observation, and these LLC gels were colorless and transparent. Polarizing light microscopy (PLM) and small-angle X-ray diffraction (SAXS) were used to analyze the internal structures of gels, and the gels displayed a cubic double-diamond (Pn3m) internal structure with a dark field of vision. The Franze diffusion cell was used to evaluate its skin penetration. There were several factors which might influence the skin penetration of drugs, such as drug loading, water content, and the layer spacing of the LLC. In our case, drug concentration gradient played a more powerful role. The result of in vitro permeation studies demonstrated that the drug concentration was higher; the cumulative osmotic quantity of SH (Q) was greater. Therefore, the system was a promising formulation for successful percutaneous delivery of SH through the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li X, Li P, Liu C, et al. Sinomenine hydrochloride inhibits breast cancer metastasis by attenuating inflammation-related epithelial-mesenchymal transition and cancer stemness. Oncotarget. 2017;8(8):13560–74.

    PubMed  PubMed Central  Google Scholar 

  2. Sun Y, Yao Y, Ding CZ. A combination of sinomenine and methotrexate reduces joint damage of collagen induced arthritis in rats by modulating osteoclast-related cytokines. Int Immunopharmacol. 2014;18:135–41.

    Article  PubMed  CAS  Google Scholar 

  3. Qian L, Xu Z, Zhang W, et al. Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase. J Neuroinflammation. 2007;4(1):1–14.

    Article  CAS  Google Scholar 

  4. Zhao Y, Li J, Yu K, et al. Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B. Int Immunopharmacol. 2007;7(5):637–45.

    Article  PubMed  CAS  Google Scholar 

  5. Gao T, Hao J, Wiesenfeld-Hallin Z, et al. Analgesic effect of sinomenine in rodents after inflammation and nerve injury. Eur J Pharmacol. 2013;721:5–11.

    Article  PubMed  CAS  Google Scholar 

  6. Zhou H, Wong YF, Wang J, Cai X, Liu L. Sinomenine ameliorates arthritis via MMPs,TIMPs, and cytokines in rats. Biochem Biophys Res Commun. 2008;376:352–7.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang MF, Zhao Y, Jiang KY, et al. Comparative pharmacokinetics study of sinomenine in rats after oral administration of sinomenine monomer and Sinomenium acutum extract. Molecules. 2014;19(8):12065–77.

    Article  PubMed  CAS  Google Scholar 

  8. Li L, Buchet R, Wu Y. Sinomenine, theophylline, cysteine, and levamisole: Comparisons of their kinetic effects on mineral formation induced by matrix vesicles. J Inorg Biochem. 2010;104:446–54.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Z, Xiao J, Wang J, et al. Anti-inflammatory effects of novel sinomenine derivatives. Int Immunopharmacol. 2015;29(2):354–60.

    Article  PubMed  CAS  Google Scholar 

  10. Wu X, Chen Y, Gui S, et al. Sinomenine hydrochloride-loaded dissolving microneedles enhanced its absorption in rabbits. Pharm Dev Technol. 2015;21(7):787–93.

    PubMed  Google Scholar 

  11. Teng P, Liu HL, Zhang L, et al. Synthesis and biological evaluation of novel sinomenine derivatives as anti-inflammatory agents. Eur J Med Chem. 2012;50:63–74.

    Article  PubMed  CAS  Google Scholar 

  12. Long H, Liu Y, Chen D, et al. Evolution and prospect of Zheng Qingfeng Tong Ning injection. Central South Pharm. 2012;10(4):303–6.

    CAS  Google Scholar 

  13. Li X, Li X, Zhou Y, et al. Development of patch and spray formulations for enhancing topical delivery of sinomenine hydrochloride. J Pharmaceut Sci. 2010;99(4):1790–9.

    Article  CAS  Google Scholar 

  14. Langer R. Transdermal drug delivery: past progress, current status, and future prospects. Adv Drug Deliv Rev. 2004;56(5):557–8.

    Article  PubMed  CAS  Google Scholar 

  15. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov Today. 2004;9(16):697.

    Article  PubMed  CAS  Google Scholar 

  16. Kadhum WR, Sekiguchi S, Hijikuro I, et al. A novel chemical enhancer approach for transdermal drug delivery with C17-monoglycerol ester liquid crystal-forming lipid. J Oleo Sci. 2017;66(5):443.

    Article  PubMed  CAS  Google Scholar 

  17. Yariv D, Efrat R, Libster D, et al. In vitro permeation of diclofenac salts from lyotropic liquid crystalline systems. Colloids Surf B Biointerfaces. 2010;78(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  18. Mishraki T, Libster D, Aserin A, et al. Temperature-dependent behavior of lysozyme within the reverse hexagonal mesophases (H(II)). Colloids Surf B Biointerfaces. 2010;75(2):391.

    Article  PubMed  CAS  Google Scholar 

  19. Kim DH, Jahn A, Cho SJ, et al. Lyotropic liquid crystal systems in drug delivery: a review. J Pharmaceut Investig. 2015;45(1):1–11.

    Article  CAS  Google Scholar 

  20. Hitesh J, Rushikesh G, Gauri J, Jagruti M, Nirali T. Liquid crystal as accelerant in drug absorption from topical formulations. Int Res J Pharm. 2011;2(4):86–9.

    Google Scholar 

  21. Sekhon BS. Surfactants: pharmaceutical and medicinal aspects. J Pharm Technol Res Manag. 2013;1:11–36.

    Article  Google Scholar 

  22. Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–40.

    Article  PubMed  CAS  Google Scholar 

  23. Rajabalaya R, Musa MN, Kifli N, et al. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals. Drug Des Dev Ther. 2017;11:393.

    Article  CAS  Google Scholar 

  24. Chen Y, Xin L, Ping M, et al. Phytantriol-Based In Situ Liquid Crystals with Long-Term Release for Intra-articular Administration. Aaps Pharmscitech. 2015;16(4):846–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Liu Q, Wan XX, Huang XP. A study on the relationship between the octanol/water partition coefficient and transdermal speed constant of sinomenine. J Branch Campus First Mil Med Univ. 2000;23(1):5–6.

    CAS  Google Scholar 

  26. Wang B, Wang YQ, Yi-Qiong PU, et al. Apparent Oil/water Partition Coefficient of 20(S)-PPD and Its Intestinal Absorption in Rats. Chin J Inf Tradit Chin Med. 2011;18(12):59–61.

    Google Scholar 

  27. Kaiser KLE, Valdmanis I. Apparent octanol/water partition coefficients of pentachlorophenol as. Can J Chem. 2011;60(16):2104–6.

    Article  Google Scholar 

  28. Mcbride EM, Kretsch A, Garibay LK, et al. Rapid experimental and computational determination of phenethylamine drug analogue lipophilicity. Forensic Chem. 2016;1:58–65.

    Article  CAS  Google Scholar 

  29. Carvalho FC, Campos ML, Peccinini RG, et al. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur J Pharm Biopharmaceut. 2013;84(1):219.

    Article  CAS  Google Scholar 

  30. Borgheti-Cardoso LN, Depieri LV, Diniz H, Calzzani RA, Fantini MC, Lyomasa MM, et al. Self-assembling gelling formulation based on a crystalline-phase liquid as a non-viral vector for siRNA delivery. Eur J Pharm Sci. 2014;58(16):72–82.

    Article  PubMed  CAS  Google Scholar 

  31. Han K, Pan X, Chen M, Wang R, Xu Y, Feng M, et al. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur J Pharm Sci. 2010;41(5):692–9.

    Article  PubMed  CAS  Google Scholar 

  32. Akbar S. Phytantriol based smart nano-carriers for drug delivery applications. Eur J Pharmaceut Sci. 2017;101:31–42.

    Article  CAS  Google Scholar 

  33. Suksaeree J, Nawathong N, Anakkawee R, et al. Formulation of Polyherbal Patches Based on Polyvinyl Alcohol and Hydroxypropylmethyl Cellulose: Characterization and In Vitro Evaluation. Aaps Pharmscitech. 2017:1–10.

  34. Souza C, de Freitas LA, Maia Campos PM. Topical Formulation Containing Beeswax-Based Nanoparticles Improved In Vivo Skin Barrier Function. Aaps Pharmscitech. 2017:1–12.

  35. And CR, Kunieda H. Effect of Electrolytes on Discontinuous Cubic Phases. Langmuir. 2000;16(22):8263–9.

    Article  CAS  Google Scholar 

  36. Rodriguez-Abreu C, Acharya DP, Aramaki K, et al. Structure and rheology of direct and reverse liquid-crystal phases in a block copolymer/water/oil system. Colloids Surf A Physicochem Eng Asp. 2005;269(1):59–66.

    Article  CAS  Google Scholar 

  37. Sato T, Hossain MK, Acharya DP, et al. Phase Behavior and Self-Organized Structures in Water/Poly(oxyethylene) Cholesteryl Ether Systems. J Phys Chem B. 2004;108(34):12927–39.

    Article  CAS  Google Scholar 

  38. Cohenavrahami M, Aserin A, Garti N. H(II) mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac. Colloids Surf B Biointerfaces. 2010;77(2):131–8.

    Article  CAS  Google Scholar 

  39. Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006;311(2):55–62.

    Article  PubMed  CAS  Google Scholar 

  40. Guyot M, Fawaz F. Design and in vitro evaluation of adhesive matrix for transdermal delivery of propranolol. Int J Pharm. 2000;204(1–2):171–82.

    Article  PubMed  CAS  Google Scholar 

  41. Barauskas J, Landh T. Phase behavior of the phytantriol/water system. Langmuir. 2003;19(23):9562–5.

    Article  CAS  Google Scholar 

  42. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.

    Article  PubMed  CAS  Google Scholar 

  43. Réeff J, Gaignaux A, Goole J, et al. Characterization and optimization of GMO-based gels with long term release for intraarticular administration. Int J Pharm. 2013;451(1–2):95–103.

    Article  PubMed  CAS  Google Scholar 

  44. Chaiyana W, Rades T, Okonogi S. Characterization and in vitro permeation study of microemulsions and liquid crystalline systems containing the anticholinesterase alkaloidal extract from Tabernaemontana divaricata. Int J Pharm. 2013;452(1–2):201–10.

    Article  PubMed  CAS  Google Scholar 

  45. Efrat R, Aserin A, Garti N. On structural transitions in a discontinuous micellar cubic phase loaded with sodium diclofenac. J Colloid Interf Sci. 2008;321(1):166–76.

    Article  CAS  Google Scholar 

  46. Iwanaga T, Kunieda H. Effect of added salts or polyols on the cloud point and the liquid-crystalline structures of polyoxyethylene-modified silicone. J Colloid Interface Sci. 2000;227(2):349.

    Article  PubMed  CAS  Google Scholar 

  47. Patil SS, Venugopal E, Bhat S, Mahadik KR, Paradkar AR. Mapping ion-induced mesophasic transformation in lyotropic in situ gelling system and its correlation with pharmaceutical performance. Pharm Res. 2013;30(7):1906–14.

    Article  PubMed  CAS  Google Scholar 

  48. Phan S, Fong WK, Kirby N, Hanley T, Boyd BJ. Evaluating the link between self-assembled mesophase structure and drug release. Int J Pharm. 2011;421(1):176–82.

    Article  PubMed  CAS  Google Scholar 

  49. Patil SS, Venugopal E, Bhat S, Mahadik KR, Paradkar AR. Exploring microstructural changes in structural analogues of ibuprofen-hosted in situ gelling system and its influence on pharmaceutical performance. AAPS PharmSciTech. 2015;16(5):1153–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cao JJ, Li ZG, Li Q, et al. Preparation and evaluation of sinomenine liquid crystal gel. Chin Pharm J. 2017;52(19):1691–7.

    Google Scholar 

  51. Misiūnas A, Niaura G, Barauskas J, et al. Horse heart cytochrome centrapped into the hydrated liquid-crystalline phases of phytantriol: X-ray diffraction and Raman spectroscopic characterization. J Colloid Interface Sci. 2012;378(1):232–40.

    Article  PubMed  CAS  Google Scholar 

  52. Nuki G, Ferguson J. Studies on the nature and significance of macromolecular complexes in the rheology of synovial fluid from normal and diseased human joints. Rheologica Acta. 1971;10(1):8–14.

    Article  CAS  Google Scholar 

  53. Ghosh I, Michniak-Kohn B. A comparative study of vitamin E TPGS/HPMC supersaturated system and other solubilizer/polymer combinations to enhance the permeability of a poorly soluble drug through the skin. Drug Dev Ind Pharm. 2012;38(11):1408.

    Article  PubMed  CAS  Google Scholar 

  54. Latsch S, Selzer T, Fink L, et al. Crystallisation of estradiol containing TDDS determined by isothermal microcalorimetry, X-ray diffraction, and optical microscopy. Eur J Pharm Biopharm. 2003;56(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  55. Éder André E, Fabíola Silva Garcia P, Ana Beatriz C, Maria Bernadete Riemma P, Marilisa Guimarães L. Liquid crystalline systems for transdermal delivery of Celecoxib: in vitro drug release and skin permeation studies. Am Assoc Pharm Sci. 2014;15(6):1468–75.

    Google Scholar 

  56. Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M. Phase behavior of a monoacylglycerol (Myverol 18-99K)/water system. Chem Phys Lipids. 2000;107:191–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The content is solely the responsibility of the authors and does not necessarily represent the official views of China Pharmaceutical University.

Funding

The authors are grateful for financial support from the National Natural Science Foundations of China (No. 81274099, No. 81072537), the Anhui Provincial Natural Science Foundation (No. 1408085QH183), Key University natural science research project of Anhui province (KJ2018A0301), and the Exploratory Research Projects of Anhui University of Chinese Medicine (No. 2016ts066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqin Jiang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, X., Li, Q., Gui, S. et al. Characterization and In Vitro Permeation Study of Cubic Liquid Crystal Containing Sinomenine Hydrochloride. AAPS PharmSciTech 19, 2237–2246 (2018). https://doi.org/10.1208/s12249-018-1018-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1018-z

KEY WORDS

Navigation